[1]
Clemente, P., Marulo, F., Lecce, L., & Bifulco, A. Experimental modal analysis of the Garigliano cable-stayed bridge. Soil Dynamics and Earthquake Engineering. 1998. 17(7-8), 485–493.
DOI: 10.1016/s0267-7261(98)00022-0
Google Scholar
[2]
Pietrzko, S., Cantieni, R., & Deger, Y. Modal testing of a steel/concrete composite bridge with a servo-hydraulic shaker. In Proc. 14th International Modal Analysis Conference. 1996. Dearbon, Michigan, 91-98.
Google Scholar
[3]
Cantieni, R., & Pietrzko, S. Modal testing of a wooden footbridge using random excitation. In Proc. of the 11th International Modal Analysis Conference. 1991. Kissimmee, USA, 1230-1237.
Google Scholar
[4]
Farrar, C., Duffey, T., Cornwell P., & Doebling, S. Excitation methods for bridge structures. In Proc. of the 17th International Modal Analysis Conference. 1999. Kissimmee, Florida, 1063-1068.
Google Scholar
[5]
Cunha, A., Caetano, E., & Magalhães, F. Output-only dynamic testing of bridges and special structures. Structural Concrete. 2007. 8(2), 67–85.
DOI: 10.1680/stco.2007.8.2.67
Google Scholar
[6]
Gentile, C. Modal and structural identification of a RC arch bridge, Structural Engineering and Mechanics. 2006. 22(1), 53-70.
DOI: 10.12989/sem.2006.22.1.053
Google Scholar
[7]
Altunisik, A., Bayraktar, A., & Sevim, B. Output-only system identification of post tensioned segmental concrete highway bridge. Journal of Bridge Engineering. 2011. 16(2), 259-266.
DOI: 10.1061/(asce)be.1943-5592.0000150
Google Scholar
[8]
Liu, T., Chiang, W., Chen, C., Hsu, W., Lu, L., & Chu, T. Identification and monitoring of bridge health from ambient vibration data. Journal of Vibration and Control. 2011. 17(4), 589-603.
DOI: 10.1177/1077546309360049
Google Scholar
[9]
Magalhães, F., Caetano, E., Cunha, A., Flamand, O., & Grillaud, G. Ambient and free vibration tests of the Millau Viaduct: Evaluation of alternative processing strategies. Engineering Structures. 2012. 45, 372-384.
DOI: 10.1016/j.engstruct.2012.06.038
Google Scholar
[10]
Wong K. Y. Instrumentation and health monitoring of cable-supported bridges. Structural Control and Health Monitoring. 2004. 11, 91–124.
DOI: 10.1002/stc.33
Google Scholar
[11]
Ko, J. M., & Ni, Y. Q. Technology development in structural health monitoring of large scale bridges. Engineering Structures. 2005. 27, 1715-1725.
DOI: 10.1016/j.engstruct.2005.02.021
Google Scholar
[12]
Magalhães, F., Cunha, A., & Caetano, E. Dynamic monitoring of a long span arch bridge. Engineering Structures. 2008. 30(11), 3034-3044.
DOI: 10.1016/j.engstruct.2008.04.020
Google Scholar
[13]
Auckland Motorways. Newmarket Viaduct replacement. http: /www. aucklandmotorways. co. nz/ southern/newmarketviaduct. php, accessed 20/01/(2013).
Google Scholar
[14]
Chen, X., Omenzetter, P., & Beskhyroun, S. Comparison of output-only methods for modal identification of a twelve-span viaduct. In Proc. 5th International Operational Modal Analysis Conference. 2013. Guimarães, Portugal. (in press).
Google Scholar
[15]
Bendat, J., & Piersol, A. Random data: Analysis and measurement procedures. USA: John Wiley and Sons. (2004).
Google Scholar
[16]
Jacobsen, N., Andersen, P., & Brincker, R. Using EFDD as a robust technique to deterministic excitation in operational modal analysis. In Proc. of the 2nd International Operational Modal Analysis Conference (IOMAC). 2007. Copenhagen, Denmark, 193-200.
DOI: 10.1002/9781118535141.ch7
Google Scholar
[17]
Chen, X., & Omenzetter, P. A framework for reliability assessment of an in-service bridge using structural health monitoring data. Key Engineering Materials. 2013. 558, 39-51.
DOI: 10.4028/www.scientific.net/kem.558.39
Google Scholar