[1]
S.W. Doebling, C.R. Farrar, M.B. Prime, D.W. Shevitz et al., Damage and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review, 1996, Los Alamos National Laboratory.
DOI: 10.2172/249299
Google Scholar
[2]
J. Antoni, The spectral kurtosis: a useful tool for characterising nonstationary signals, Mechanical Systems and Signal Processing, 20, 2, 282-307, (2006).
DOI: 10.1016/j.ymssp.2004.09.001
Google Scholar
[3]
W.J. Staszewski, K. Worden, G. R. Tomlinson et al., Time-frequency analysis in gearbox fault detection using Wigner-Ville distribution and pattern recognition, Mechanical Systems and Signal Processing, 11, 5, 673-692, (1997).
DOI: 10.1006/mssp.1997.0102
Google Scholar
[4]
W. J. Staszewski and G.R. Tomlinson, Application of the wavelet transform to fault detection in a spur gear, Mechanical Systems and Signal Processing, 8, 3, 289-307, (1994).
DOI: 10.1006/mssp.1994.1022
Google Scholar
[5]
A. Parey, M. El Badaoui, F. Guillet, N. Tandon et al., Dynamic modelling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect, Mechanical Systems and Signal Processing. 294, 3, 547-561, (2006).
DOI: 10.1016/j.jsv.2005.11.021
Google Scholar
[6]
Z. K. Peng and F. L. Chu, Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography, Mechanical Systems and Signal Processing, 18, 2, 199-221, (2004).
DOI: 10.1016/s0888-3270(03)00075-x
Google Scholar
[7]
Y. Lei, J. Lin, M. J. Zuo et al., A review on empirical mode decomposition in fault diagnosis of rotating machinery, Mechanical Systems and Signal Processing, 35, 108-126, (2013).
DOI: 10.1016/j.ymssp.2012.09.015
Google Scholar
[8]
C. Li and M. Liang, A generalized synchrosqueezing transform for enhancing signal time-frequency representation, Signal Processing, 92, 2264-2274, (2012).
DOI: 10.1016/j.sigpro.2012.02.019
Google Scholar
[9]
B. Boabash, Estimating and interpreting the instantaneous frequency of a signal, Part II: Algorithms and Applications, Proc. IEEE, 80, 549-568, (1992).
DOI: 10.1109/5.135378
Google Scholar
[10]
N. E. Huang, Z. Wu, S. R. Long, K. C. Arnold, X. Chen K. Blank et al., On instantaneous frequency, Advances in Adaptive Data Analysis, 1, 2, 177-229, (2009).
DOI: 10.1142/s1793536909000096
Google Scholar
[11]
S. Qian and D. Chen, Joint time-frequency analysis: Methods and Applications, Upper Saddle River, NJ: Prentice-Hall, (1996).
Google Scholar
[12]
N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of Royal Society of London Series , 1998, 454, 903-995.
DOI: 10.1098/rspa.1998.0193
Google Scholar
[13]
M. Feldman, Hilbert transform applications in mechanical vibration, Wiley, (2011).
Google Scholar
[14]
P. Flandrin, G. Rilling and P. Goncalves, Empirical mode decomposition as a filter bank, IEEE Signal Processing Letters, 2004, 11, 112-114.
DOI: 10.1109/lsp.2003.821662
Google Scholar
[15]
Z. Wu and N. E. Huang, Ensemble empirical mode decomposition: A noise-assisted data analysis method, Advances in Adaptive Data Analysis, 2009, 1, 1-49.
DOI: 10.1142/s1793536909000047
Google Scholar
[16]
H. M. Teager and S. M. Teager, A phenomenological model for vowel production in the vocal tract, Speech Science: Recent Advances, 1985, College-Hill Press, San Diego, CA, chapter 3, 73-109.
Google Scholar
[17]
H. M. Teager and S. M. Teager, Evidence for nonlinear sound production mechanisms in the vocal tract, International Conference on Acoustics, Speech and Signal Processing, 1990, Kluwer Academic Publications, France, 4, chapter 55, 241-261.
DOI: 10.1007/978-94-009-2037-8_10
Google Scholar
[18]
P. Maragos, J. F. Kaiser and T. F. Quartieri, Energy separation in signal modulations with application to speech analysis, IEEE Transactions on Signal Processing, 1993, 10, 3024-3051.
DOI: 10.1109/78.277799
Google Scholar
[19]
A. Potamianos and P. Maragos, A comparison of the Energy operator and the Hilbert Transform to signal and speech demodulation, Signal Processing, 1994, 37, 95-120.
DOI: 10.1016/0165-1684(94)90169-4
Google Scholar
[20]
Sørensen, B. F., Jørgensen, E., Debel, C. P., Jensen, F. M., Jensen, H. M., Jacobsen, T.K., and Halling, K., 2004, Improved design of large wind turbine blade of fibre composites based on studies of scale effects (Phase 1). Summary report, Riso-R-1390(EN), 36 p.
Google Scholar
[21]
Jørgensen, E., et al., Full scale testing of wind turbine blade to failure - flapwise loading, Risø-R-1392(EN).
Google Scholar
[22]
Overgaard LCT, Lund E, Thomsen OT. Structural collapse of a wind turbine blade. Part A: static test and equivalent single layered models. Composites: Part A 2010; 41: 257–70.
DOI: 10.1016/j.compositesa.2009.10.011
Google Scholar
[23]
Overgaard LCT, Lund E. Structural collapse of a wind turbine blade. Part B: Progressive interlaminar failure models. Composites: Part A 41 (2010) 271–283.
DOI: 10.1016/j.compositesa.2009.10.012
Google Scholar
[24]
Ole J. D. Kristensen et al, Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades - a Preproject Annex E - Full-Scale Test of Wind Turbine Blade, Using Sensors and NDT, 2002, ISBN 87-550-3034-3 87-550-3035-1(Internet) ISSN 0106-2840.
Google Scholar
[25]
Stuart G. Taylor et al., Full-scale fatigue tests of CX-100 wind turbine blades. Part II: analysis, SPIE's Annual International Symposium on Smart Structures and Materials, 8348, (2012).
DOI: 10.1117/12.917493
Google Scholar
[26]
Kevin M. Farinholt et al., Full-scale fatigue tests of CX-100 wind turbine blades. Part I: testing, SPIE's Annual International Symposium on Smart Structures and Materials, 8343, (2012).
DOI: 10.1117/12.917493
Google Scholar
[27]
C. M. Bishop, Neural networks for pattern recognition, Oxford University Press, (1995).
Google Scholar
[28]
C. M. Bishop, Pattern recognition and machine learning, Springer Press, (2006).
Google Scholar
[29]
Ian T. Nabney, Netlab algorithms for pattern recognition, Springer, (2004).
Google Scholar
[30]
M. A. Kramer, Nonlinear principal component analysis using auto-associative neural networks. AIChE Journal, 37(2): 233–243, (1991).
DOI: 10.1002/aic.690370209
Google Scholar
[31]
N. Japkowicz, S.J. Hanson, M.A. Gluck, Nonlinear autoassociation is not equivalent to PCA, Neural Computation 12, 531-545, Massachusetts Institute of Technology, (2000).
DOI: 10.1162/089976600300015691
Google Scholar
[32]
M. Scholz, R. Vig´ario. Nonlinear PCA: a new hierarchical approach. In M. Verleysen, editor, Proceedings ESANN, pages 439–444, (2002).
Google Scholar
[33]
Bourlard, H., Kamp, Y., Auto-association by multilayer perceptrons and singular value decomposition. Biological Cybernetics, 59, 291–294, (1988).
DOI: 10.1007/bf00332918
Google Scholar
[34]
H. Sohn, K. Worden, C.F. Farrar, Novelty detection under changing environmental conditions, SPIE's Eighth Annual International Symposium on Smart Structures and Materials, Newport Beach, CA. (LA-UR-01-1894), (2001).
DOI: 10.1117/12.434110
Google Scholar
[35]
G. Manson, K. Worden, D. J. Allman, Experimental validation of a structural health monitoring methodology: Part II. Novelty detection on an aircraft wing, Journal of Sound and Vibration. 259, 345–363, (2003).
DOI: 10.1006/jsvi.2002.5167
Google Scholar
[36]
L. Tarassenko, A. Nairac, N. Townsend, I. Buxton, Z. Cowley, Novelty detection for the identification of abnormalities, International Journal of Systems Science, 31(11), pp.1427-1439, (2000).
DOI: 10.1080/00207720050197802
Google Scholar