Advanced Tools for Damage Detection in Wind Turbines

Article Preview

Abstract:

The paper summarises some advanced damage detection approaches used for Structural Health Monitoring (SHM) and Condition Monitoring (CM) of wind turbine systems. In the signal processing part, recent time-frequency analysis methods will be presented and examples of their application on condition monitoring of gearboxes will be given. In the pattern recognition part, examples of damage detection in blades will be used to introduce different algorithms for novelty detection.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 569-570)

Pages:

547-554

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.W. Doebling, C.R. Farrar, M.B. Prime, D.W. Shevitz et al., Damage and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review, 1996, Los Alamos National Laboratory.

DOI: 10.2172/249299

Google Scholar

[2] J. Antoni, The spectral kurtosis: a useful tool for characterising nonstationary signals, Mechanical Systems and Signal Processing, 20, 2, 282-307, (2006).

DOI: 10.1016/j.ymssp.2004.09.001

Google Scholar

[3] W.J. Staszewski, K. Worden, G. R. Tomlinson et al., Time-frequency analysis in gearbox fault detection using Wigner-Ville distribution and pattern recognition, Mechanical Systems and Signal Processing, 11, 5, 673-692, (1997).

DOI: 10.1006/mssp.1997.0102

Google Scholar

[4] W. J. Staszewski and G.R. Tomlinson, Application of the wavelet transform to fault detection in a spur gear, Mechanical Systems and Signal Processing, 8, 3, 289-307, (1994).

DOI: 10.1006/mssp.1994.1022

Google Scholar

[5] A. Parey, M. El Badaoui, F. Guillet, N. Tandon et al., Dynamic modelling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect, Mechanical Systems and Signal Processing. 294, 3, 547-561, (2006).

DOI: 10.1016/j.jsv.2005.11.021

Google Scholar

[6] Z. K. Peng and F. L. Chu, Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography, Mechanical Systems and Signal Processing, 18, 2, 199-221, (2004).

DOI: 10.1016/s0888-3270(03)00075-x

Google Scholar

[7] Y. Lei, J. Lin, M. J. Zuo et al., A review on empirical mode decomposition in fault diagnosis of rotating machinery, Mechanical Systems and Signal Processing, 35, 108-126, (2013).

DOI: 10.1016/j.ymssp.2012.09.015

Google Scholar

[8] C. Li and M. Liang, A generalized synchrosqueezing transform for enhancing signal time-frequency representation, Signal Processing, 92, 2264-2274, (2012).

DOI: 10.1016/j.sigpro.2012.02.019

Google Scholar

[9] B. Boabash, Estimating and interpreting the instantaneous frequency of a signal, Part II: Algorithms and Applications, Proc. IEEE, 80, 549-568, (1992).

DOI: 10.1109/5.135378

Google Scholar

[10] N. E. Huang, Z. Wu, S. R. Long, K. C. Arnold, X. Chen K. Blank et al., On instantaneous frequency, Advances in Adaptive Data Analysis, 1, 2, 177-229, (2009).

DOI: 10.1142/s1793536909000096

Google Scholar

[11] S. Qian and D. Chen, Joint time-frequency analysis: Methods and Applications, Upper Saddle River, NJ: Prentice-Hall, (1996).

Google Scholar

[12] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of Royal Society of London Series , 1998, 454, 903-995.

DOI: 10.1098/rspa.1998.0193

Google Scholar

[13] M. Feldman, Hilbert transform applications in mechanical vibration, Wiley, (2011).

Google Scholar

[14] P. Flandrin, G. Rilling and P. Goncalves, Empirical mode decomposition as a filter bank, IEEE Signal Processing Letters, 2004, 11, 112-114.

DOI: 10.1109/lsp.2003.821662

Google Scholar

[15] Z. Wu and N. E. Huang, Ensemble empirical mode decomposition: A noise-assisted data analysis method, Advances in Adaptive Data Analysis, 2009, 1, 1-49.

DOI: 10.1142/s1793536909000047

Google Scholar

[16] H. M. Teager and S. M. Teager, A phenomenological model for vowel production in the vocal tract, Speech Science: Recent Advances, 1985, College-Hill Press, San Diego, CA, chapter 3, 73-109.

Google Scholar

[17] H. M. Teager and S. M. Teager, Evidence for nonlinear sound production mechanisms in the vocal tract, International Conference on Acoustics, Speech and Signal Processing, 1990, Kluwer Academic Publications, France, 4, chapter 55, 241-261.

DOI: 10.1007/978-94-009-2037-8_10

Google Scholar

[18] P. Maragos, J. F. Kaiser and T. F. Quartieri, Energy separation in signal modulations with application to speech analysis, IEEE Transactions on Signal Processing, 1993, 10, 3024-3051.

DOI: 10.1109/78.277799

Google Scholar

[19] A. Potamianos and P. Maragos, A comparison of the Energy operator and the Hilbert Transform to signal and speech demodulation, Signal Processing, 1994, 37, 95-120.

DOI: 10.1016/0165-1684(94)90169-4

Google Scholar

[20] Sørensen, B. F., Jørgensen, E., Debel, C. P., Jensen, F. M., Jensen, H. M., Jacobsen, T.K., and Halling, K., 2004, Improved design of large wind turbine blade of fibre composites based on studies of scale effects (Phase 1). Summary report, Riso-R-1390(EN), 36 p.

Google Scholar

[21] Jørgensen, E., et al., Full scale testing of wind turbine blade to failure - flapwise loading, Risø-R-1392(EN).

Google Scholar

[22] Overgaard LCT, Lund E, Thomsen OT. Structural collapse of a wind turbine blade. Part A: static test and equivalent single layered models. Composites: Part A 2010; 41: 257–70.

DOI: 10.1016/j.compositesa.2009.10.011

Google Scholar

[23] Overgaard LCT, Lund E. Structural collapse of a wind turbine blade. Part B: Progressive interlaminar failure models. Composites: Part A 41 (2010) 271–283.

DOI: 10.1016/j.compositesa.2009.10.012

Google Scholar

[24] Ole J. D. Kristensen et al, Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades - a Preproject Annex E - Full-Scale Test of Wind Turbine Blade, Using Sensors and NDT, 2002, ISBN 87-550-3034-3 87-550-3035-1(Internet) ISSN 0106-2840.

Google Scholar

[25] Stuart G. Taylor et al., Full-scale fatigue tests of CX-100 wind turbine blades. Part II: analysis, SPIE's Annual International Symposium on Smart Structures and Materials, 8348, (2012).

DOI: 10.1117/12.917493

Google Scholar

[26] Kevin M. Farinholt et al., Full-scale fatigue tests of CX-100 wind turbine blades. Part I: testing, SPIE's Annual International Symposium on Smart Structures and Materials, 8343, (2012).

DOI: 10.1117/12.917493

Google Scholar

[27] C. M. Bishop, Neural networks for pattern recognition, Oxford University Press, (1995).

Google Scholar

[28] C. M. Bishop, Pattern recognition and machine learning, Springer Press, (2006).

Google Scholar

[29] Ian T. Nabney, Netlab algorithms for pattern recognition, Springer, (2004).

Google Scholar

[30] M. A. Kramer, Nonlinear principal component analysis using auto-associative neural networks. AIChE Journal, 37(2): 233–243, (1991).

DOI: 10.1002/aic.690370209

Google Scholar

[31] N. Japkowicz, S.J. Hanson, M.A. Gluck, Nonlinear autoassociation is not equivalent to PCA, Neural Computation 12, 531-545, Massachusetts Institute of Technology, (2000).

DOI: 10.1162/089976600300015691

Google Scholar

[32] M. Scholz, R. Vig´ario. Nonlinear PCA: a new hierarchical approach. In M. Verleysen, editor, Proceedings ESANN, pages 439–444, (2002).

Google Scholar

[33] Bourlard, H., Kamp, Y., Auto-association by multilayer perceptrons and singular value decomposition. Biological Cybernetics, 59, 291–294, (1988).

DOI: 10.1007/bf00332918

Google Scholar

[34] H. Sohn, K. Worden, C.F. Farrar, Novelty detection under changing environmental conditions, SPIE's Eighth Annual International Symposium on Smart Structures and Materials, Newport Beach, CA. (LA-UR-01-1894), (2001).

DOI: 10.1117/12.434110

Google Scholar

[35] G. Manson, K. Worden, D. J. Allman, Experimental validation of a structural health monitoring methodology: Part II. Novelty detection on an aircraft wing, Journal of Sound and Vibration. 259, 345–363, (2003).

DOI: 10.1006/jsvi.2002.5167

Google Scholar

[36] L. Tarassenko, A. Nairac, N. Townsend, I. Buxton, Z. Cowley, Novelty detection for the identification of abnormalities, International Journal of Systems Science, 31(11), pp.1427-1439, (2000).

DOI: 10.1080/00207720050197802

Google Scholar