DABCO-Directed Self-Assembly of Pyrene-Centered Porphyrin Pentamers

Article Preview

Abstract:

DABCO (1, 4-diazabicyclo [2.2.2] octane) has been used in combination with pentameric zinc porphyrin-pyrene array 1 to form well-defined supramolecular arrays through axial coordination. The self-assembly process has been investigated by a wide range of spectroscopic methods including UV-vis, fluorescence emission and 1H NMR techniques.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 575-576)

Pages:

123-129

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Tsuda, A. Osuka, Fully Conjugated Porphyrin Tapes with Electronic Absorption Bands That Reach into Infrared, Science 293 (2001) 79-82.

DOI: 10.1126/science.1059552

Google Scholar

[2] C.C. Mak, N. Bampos, J.K.M. Sanders, Metalloporphyrin dendrimers with folding arms, Angew. Chem. Int. Ed. 37 (1998) 3020-3023.

DOI: 10.1002/(sici)1521-3773(19981116)37:21<3020::aid-anie3020>3.0.co;2-s

Google Scholar

[3] A.K. Burrell, D.L. Officer, Functionalizing porphyrins via wittig reactions: a building block approach, Synlett. (1998) 1297-1307.

DOI: 10.1055/s-1998-1938

Google Scholar

[4] J. Li, J.S. Lindsey, Efficient synthesis of light-harvesting arrays composed of eight porphyrins and one phthalocyanine, J. Org. Chem. 64 (1999) 9101-9108.

DOI: 10.1021/jo991102e

Google Scholar

[5] J. Li, J.R. Diers, J. Seth, S.I. Yang, D.F. Bocian, D. Holten, J.S. Lindsey, Synthesis and Properties of star-shaped multiporphyrin-phthalocyanine light-harvesting arrays, J. Org. Chem. 64 (1999) 9090-9100.

DOI: 10.1021/jo991001g

Google Scholar

[6] R.W. Wagner, J.S. Lindsey, J. Seth, V. Palaniappan, D.F. Bocian, Molecular optoelectronic gates, J. Am. Chem. Soc. 118 (1996) 3996-3997.

DOI: 10.1021/ja9602657

Google Scholar

[7] A. Kahnt, J. Karnbratt, L.J. Esdaile, M. Hutin, K. Sawada, H.L. Anderson, B. Albinsson, Temperature dependence of charge separation and recombination in porphyrin oligomer–fullerene donor–acceptor systems, J. Am. Chem. Soc. 133 (2011) 9863-9871.

DOI: 10.1021/ja2019367

Google Scholar

[8] S. Fukuzumi, K. Saito, K. Ohkubo, T. Khoury, Y. Kashiwagi, M.A. Absalom, S. Gadde, F. D'Souza, Y. Araki, O. Ito, M.J. Crossley, Multiple photosynthetic reaction centres composed of supramolecular assemblies of zinc porphyrin dendrimers with a fullerene acceptor, Chem. Commn. 47 (2011).

DOI: 10.1039/c1cc11725d

Google Scholar

[9] Z.C. Zhou, C.Z. Cao, Z.Q. Yin, Q.H. Liu, Bis(zinc porphyrin) bridged by benzo orthocarbonates as a conformational switch under regulation of DABCO and a Cu+ ion, Org. Lett. 11 (2009) 1781-1784.

DOI: 10.1021/ol802976h

Google Scholar

[10] J.A.A.W. Elemans, R. van Hameren, R.J.M. Nolte, A.E. Rowan, Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes, Adv. Mater. 18 (2006) 1251-1266.

DOI: 10.1002/adma.200502498

Google Scholar

[11] J. Otsuki, K. Iwasaki, Y. Nakano, M. Itou, Y. Araki , O. Ito, Supramolecular porphyrin assemblies through amidinium-carboxylate salt bridges and fast intra-ensemble excited energy transfer, Chem. Eur. J. 10 (2004) 3461-3466.

DOI: 10.1002/chem.200400152

Google Scholar

[12] J. Otsuki, E. Nagamine, T. Kondo, K. Iwasaki, M. Asakawa, K. Miyake, Surface patterning with two-dimensional porphyrin supramolecular arrays, J. Am. Chem. Soc. 127 (2005) 10400-10405.

DOI: 10.1021/ja0531778

Google Scholar

[13] J.A.A.W. Elemans, M.C. Lensen, J.W. Gerritsen, H. van Kempen, S. Speller, R.J.M. Nolte, A.E. Rowan, Scanning probe studies of porphyrin assemblies and their supramolecular manipulation at a solid-liquid interface, Adv. Mater. 15 (2003).

DOI: 10.1002/adma.200305602

Google Scholar

[14] M.C. Lensen, S.J.T. van Dingenen, J.A.A.W. Elemans, H.P. Dijkstra, G.P.M. van Klink, G. van Koten, J.W. Gerritsen, S. Speller, R.J.M. Nolte, A.E. Rowan, Synthesis and self-assembly of giant porphyrin discs, Chem. Commun. 7 (2004) 762-763.

DOI: 10.1039/b401324g

Google Scholar

[15] M.M. Conn, J. Rebek, Self-assembling capsules, Chem. Rev. 97 (1997) 1647-1668.

DOI: 10.1021/cr9603800

Google Scholar

[16] D. Philp, J.F. Stoddart, Self-assembly in natural and unnatural systems, Angew. Chem. Int. Ed. Engl. 35 (1996) 1155-1196.

DOI: 10.1002/anie.199611541

Google Scholar

[17] O. Shoji, H. Tanaka, T. Kawai, Y. Kobuke, Single molecule visualization of coordination-assembled porphyrin macrocycles reinforced with covalent Linkings, J. Am. Chem. Soc. 127 (2005) 8598-8599.

DOI: 10.1021/ja051344y

Google Scholar

[18] S. Yagi, M. Ezoe, I. Yonekura, T. Takagishi, H. Nakazumi, Diarylurea-linked Zinc porphyrin dimer as a dual-mode artificial receptor:  supramolecular control of complexation-facilitated photoinduced electron transfer, J. Am. Chem. Soc. 125 (2003).

DOI: 10.1021/ja0294717

Google Scholar

[19] P. Ballester, A. Costa, A.M. Castilla, P.M. Deya, A. Frontera, R.M. Gomila, C.A. Hunter, DABCO-directed self-Aassembly of bisporphyrins (DABCO=1, 4-Diazabicyclo[2. 2. 2]octane), Chem. Eur. J. 11 (2005) 2196-2206.

DOI: 10.1002/chem.200400772

Google Scholar

[20] H.L. Anderson, C.A. Hunter, M.N. Meah, J.K.M. Sanders, Thermodynamics of induced-fit binding inside polymacrocyclic porphyrin hosts, J. Am. Chem. Soc. 112 (1990) 5780-5789.

DOI: 10.1021/ja00171a017

Google Scholar

[21] P.N. Taylor, H.L. Anderson, Cooperative self-assembly of double-strand conjugated porphyrin ladders, J. Am. Chem. Soc. 121 (1999) 11538-11545.

DOI: 10.1021/ja992821d

Google Scholar

[22] L. Baldini, P. Ballester, A. Casnati, R.M. Gomila, C.A. Hunter, F. Sansone, R. Ungaro, Molecular acrobatics:  self-assembly of calixarene-porphyrin cages, J. Am. Chem. Soc. 125 (2003) 14181-14189.

DOI: 10.1021/ja036758a

Google Scholar

[23] P. Ballester, A.I. Oliva, A. Costa, P.M. Deyà, A. Frontera, R.M. Gomila, C.A. Hunter, DABCO-induced self-assembly of a trisporphyrin double-decker cage:  thermodynamic characterization and guest recognition, J. Am. Chem. Soc. 128 (2006).

DOI: 10.1021/ja060608t

Google Scholar

[24] R.F. Kelley, W.S. Shin, B. Rybtchinski, M.R. Wasielewski, Photoinitiated charge transport in supramolecular assemblies of a 1, 7, N, N'-tetrakis(zinc porphyrin)-perylene-3, 4, 9, 10-bis(dicarboximide), J. Am. Chem. Soc. 129 (2007) 3173-3181.

DOI: 10.1021/ja0664741

Google Scholar

[25] C.C. Mak, N. Bambos, S.L. Darling, M. Montalti, L. Prodi, J.K.M. Sanders , A strategy for the assembly of multiple porphyrin arrays based on the coordination chemistry of Ru-centered porphyrin pentamers, J. Org. Chem. 66 (2001) 4476-4486.

DOI: 10.1021/jo001564o

Google Scholar

[26] R.M. Gomila, D. Quinonero, C. Rotger, C. Garau, A. Frontera, P. Ballester, A. Costa, P.M. Deya, Predicting experimental complexation-induced changes in 1H NMR chemical shift for complexes between zinc-porphyrins and amines using the ab initio/GIAO-HF methodology, Org. Lett. 4 (2002).

DOI: 10.1021/ol0170962

Google Scholar

[27] N. Sheng, J. Sun, Y.Z. Bian, J.Z. Jiang, D. Xu, Synthesis and third-order nonlinear optical properties of novel ethynyl-linked heteropentamer composed of four porphyrins and one pyrene, J. Por. Phth. 13 (2009) 275-282.

DOI: 10.1142/s1088424609000346

Google Scholar

[28] M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26 (1990) 760-769.

DOI: 10.1109/3.53394

Google Scholar

[29] E. Milanesio, M.G. Alvarez, E.I. Yslas, C.D. Borsarelli, J.J. Silber, V. Rivarola, E. N. Durantini, Photodynamic studies of metallo 5, 10, 15, 20-Tetrakis(4-methoxyphenyl) porphyrin: photochemical characterization and biological consequences in a human carcinoma cell line, Photochem. Photobiol. 74 (2001).

DOI: 10.1562/0031-8655(2001)074<0014:psomtm>2.0.co;2

Google Scholar

[30] H. Du, R.A. Fuh, J. Li, A. Corkan, J.S. Lindsey, PhotochemCAD: a computer-aided design and research tool in photochemistry, Photochem. Photobiol. 68 (1998) 141-142.

DOI: 10.1111/j.1751-1097.1998.tb02480.x

Google Scholar