A Numerical Model to Study the Hydrogen Embrittlement Effect on Low-Alloy Steels

Article Preview

Abstract:

Pipeline working environment is characterised by corrosive conditions, able to develop hydrogen formation. The presence of atomic hydrogen localized in correspondence of crack tip, where the plastic strain reaches the maximum value, is responsible for life reduction. For this reason, it is important to estimate and predict the mechanical properties decay, in terms of toughness and crack propagation, when steel is in contact with hydrogen. Aim of this study is to develop FE models of two carbon, low-alloyed steels used in pipelines applications: X65 and F22. A complex model including three simulations steps is presented. It considers the combined effect of plastic strain and hydrogen concentration on the material toughness. The results of the model are validated by a comparison with experimental tests carried out on the two low-alloyed steel.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 577-578)

Pages:

513-516

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.J. Kumnick, H.H. Johnson: Acta Metallurgica Vol. 28 (1980), pp.33-39

Google Scholar

[2] A. McNabb, P.K. Foster: Trans Metall Soc AIME Vol. 227 (1963), pp.618-27

Google Scholar

[3] P. Sofronis, R.M. McMeeking: J. Mechanics and Physics of Solids Vol. 37 (1989), pp.317-350

Google Scholar

[4] V. Olden, A. Alvaro, O.M. Akselsen: Int. J. Hydrogen Energy Vol. 37 (2012), pp.11474-86

Google Scholar

[5] R. Krueger: Appl. Mech. Rev. Vol 57 (2004), pp.109-143

Google Scholar

[6] Abaqus v.6.12 documentation, Dassault Systèmes Simulia Corp.

Google Scholar

[7] F. Bolzoni, P. Fassina, G. Fumagalli, L. Lazzari, L. Vergani, A. Sciuccati: Engineering Fracture Mechanics, Volume 81, February 2012, pp.43-55.

DOI: 10.1016/j.engfracmech.2011.09.016

Google Scholar

[8] A. Taha, P. Sofronis: Eng. Fract. Mech. Vol. 68 (2001), pp.803-37

Google Scholar

[9] S. Serebrinsky, E. Carter, M. Ortiz: J. Mech. Phys. Solid Vol 52 (2004), pp.2403-30

Google Scholar