[1]
D. Carolan, P. Alveen, A. Ivanković, N. Murphy. Effect of notch root radius on fracture toughness of polycrystalline cubic boron nitride. Eng. Fract. Mech., 78 (2011) 2885-2895
DOI: 10.1016/j.engfracmech.2011.08.003
Google Scholar
[2]
D. Carolan, A. Ivanković, N. Murphy. Thermal shock resistance of polycrystalline cubic boron nitride. J. Eur. Ceram. Soc., 32 (2012) 2581–2586
DOI: 10.1016/j.jeurceramsoc.2012.03.013
Google Scholar
[3]
A.C.E. Reid, S.A. Langer, R.C. Lua, V.R. Coffman, S. Haan, R.E. García. Image-based finite element mesh construction for material microstructures. Comput. Mater. Sci., 43(4) (2008) 989-999
DOI: 10.1016/j.commatsci.2008.02.016
Google Scholar
[4]
M. Huang, Y. Li. X-ray tomography image-based reconstruction of microstructural finite element mesh models for heterogeneous materials. Comput. Mater. Sci., 67 (2012) 63–72
DOI: 10.1016/j.commatsci.2012.08.032
Google Scholar
[5]
M. Nygårds, P. Gudmundson. Three-dimensional periodic Voronoi grain models and micromechanical FE-simulations of a two- phase steel. Comput. Mater. Sci., 24 (2002) 513–519
DOI: 10.1016/s0927-0256(02)00156-8
Google Scholar
[6]
M. Kühn, M.O. Steinhauser. Modeling and simulation of microstructures using power diagrams: Proof of the concept. Appl. Phys. Lett., 93 (2008) 034102
DOI: 10.1063/1.2959733
Google Scholar
[7]
R. Dobosz, M. Lewandowska, K.J. Kurzydlowski. FEM modelling of the combined effect of grain boundaries and second phase particles on the flow stress of nanocrystalline metals. Comput. Mater. Sci., 53(1) (2012) 286–293
DOI: 10.1016/j.commatsci.2011.09.029
Google Scholar
[8]
D.H. Warner, J.F. Molinari. Micromechanical finite element modeling of compressive fracture in confined alumina ceramic. Acta Mater., 54(19) (2006) 5135–5145
DOI: 10.1016/j.actamat.2006.06.046
Google Scholar
[9]
T. Zhou, C. Huang, H. Liu, J. Wang, B. Zou, H Zhu. Crack propagation simulation in microstructure of ceramic tool materials. Comput. Mater. Sci., 54 (2012) 150–156
DOI: 10.1016/j.commatsci.2011.10.039
Google Scholar
[10]
H. Li, K. Li, G. Subhash, L.J. Kecskes, R.J. Dowding. Micromechanical modeling of tungsten-based bulk metallic glass matrix composites. Mater. Sci. Eng., A, 429 (2006) 115–123
DOI: 10.1016/j.msea.2006.05.027
Google Scholar
[11]
H. Weller, G. Tabor, H. Jasak, C. Fureby. A tensorial approach to CFD using object oriented techniques. Computers in Physics, 12 (1998) 620– 631
DOI: 10.1063/1.168744
Google Scholar
[12]
Z. Hashin, S. Shtrikman. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids, 11 (1963) 127–140
DOI: 10.1016/0022-5096(63)90060-7
Google Scholar
[13]
P. Wall. A comparison of homogenization, Hashin-Shtrikman bounds and the Halpin-Tsai equation. Applications of Mathematics, 42 (1997) 245–257
DOI: 10.1023/a:1023034411371
Google Scholar
[14]
Z. Hashin. On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry. J. Mech. Phys. Solids, 13 (1965)119–134
DOI: 10.1016/0022-5096(65)90015-3
Google Scholar
[15]
G. P. Tandon and G. J. Weng. Average stress in the matrix and effective moduli of randomly oriented composites. Compos. Sci. Technol., 27 (1986) 111–132
DOI: 10.1016/0266-3538(86)90067-9
Google Scholar
[16]
T. Mori and K. Tanaka. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall., 21 (1973) 571– 574
DOI: 10.1016/0001-6160(73)90064-3
Google Scholar
[17]
J.D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London, Ser. A, 241 (1957) 376–396
DOI: 10.1098/rspa.1957.0133
Google Scholar
[18]
X. Chen, Y. Mai. Micromechanics of rubbertoughened polymers. J. Mater. Sci., 33 (1998) 3529–3539
Google Scholar