Micromechanical Modelling of Advanced Ceramics Using Statistically Representative Microstructures

Article Preview

Abstract:

Advanced ceramics are a class of materials used as cutting tools in some of the most demanding material removal operations. Their high hardness makes them extremely suited for use at these extreme conditions. However they have a relatively low fracture toughness when compared to other conventional tool materials. A combined experimental-numerical method was used to investigate the role of microstructure on the fracture of advanced ceramics. In particular, the effect of grain size and matrix content were examined. Representative finite volume (FV) microstructures were created using Voronoi tessellation. It is shown, by comparing with real micrographs, that the method captures the features of real microstructures in terms of grain size distribution and grain aspect ratio. It was found that the underlying microstructure significantly affects the failure of this class of materials. Furthermore, it was found that by altering the microstructural parameters in the numerical model, such as grain size and matrix content, it is possible to specify material improvements.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 577-578)

Pages:

53-56

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Carolan, P. Alveen, A. Ivanković, N. Murphy. Effect of notch root radius on fracture toughness of polycrystalline cubic boron nitride. Eng. Fract. Mech., 78 (2011) 2885-2895

DOI: 10.1016/j.engfracmech.2011.08.003

Google Scholar

[2] D. Carolan, A. Ivanković, N. Murphy. Thermal shock resistance of polycrystalline cubic boron nitride. J. Eur. Ceram. Soc., 32 (2012) 2581–2586

DOI: 10.1016/j.jeurceramsoc.2012.03.013

Google Scholar

[3] A.C.E. Reid, S.A. Langer, R.C. Lua, V.R. Coffman, S. Haan, R.E. García. Image-based finite element mesh construction for material microstructures. Comput. Mater. Sci., 43(4) (2008) 989-999

DOI: 10.1016/j.commatsci.2008.02.016

Google Scholar

[4] M. Huang, Y. Li. X-ray tomography image-based reconstruction of microstructural finite element mesh models for heterogeneous materials. Comput. Mater. Sci., 67 (2012) 63–72

DOI: 10.1016/j.commatsci.2012.08.032

Google Scholar

[5] M. Nygårds, P. Gudmundson. Three-dimensional periodic Voronoi grain models and micromechanical FE-simulations of a two- phase steel. Comput. Mater. Sci., 24 (2002) 513–519

DOI: 10.1016/s0927-0256(02)00156-8

Google Scholar

[6] M. Kühn, M.O. Steinhauser. Modeling and simulation of microstructures using power diagrams: Proof of the concept. Appl. Phys. Lett., 93 (2008) 034102

DOI: 10.1063/1.2959733

Google Scholar

[7] R. Dobosz, M. Lewandowska, K.J. Kurzydlowski. FEM modelling of the combined effect of grain boundaries and second phase particles on the flow stress of nanocrystalline metals. Comput. Mater. Sci., 53(1) (2012) 286–293

DOI: 10.1016/j.commatsci.2011.09.029

Google Scholar

[8] D.H. Warner, J.F. Molinari. Micromechanical finite element modeling of compressive fracture in confined alumina ceramic. Acta Mater., 54(19) (2006) 5135–5145

DOI: 10.1016/j.actamat.2006.06.046

Google Scholar

[9] T. Zhou, C. Huang, H. Liu, J. Wang, B. Zou, H Zhu. Crack propagation simulation in microstructure of ceramic tool materials. Comput. Mater. Sci., 54 (2012) 150–156

DOI: 10.1016/j.commatsci.2011.10.039

Google Scholar

[10] H. Li, K. Li, G. Subhash, L.J. Kecskes, R.J. Dowding. Micromechanical modeling of tungsten-based bulk metallic glass matrix composites. Mater. Sci. Eng., A, 429 (2006) 115–123

DOI: 10.1016/j.msea.2006.05.027

Google Scholar

[11] H. Weller, G. Tabor, H. Jasak, C. Fureby. A tensorial approach to CFD using object oriented techniques. Computers in Physics, 12 (1998) 620– 631

DOI: 10.1063/1.168744

Google Scholar

[12] Z. Hashin, S. Shtrikman. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids, 11 (1963) 127–140

DOI: 10.1016/0022-5096(63)90060-7

Google Scholar

[13] P. Wall. A comparison of homogenization, Hashin-Shtrikman bounds and the Halpin-Tsai equation. Applications of Mathematics, 42 (1997) 245–257

DOI: 10.1023/a:1023034411371

Google Scholar

[14] Z. Hashin. On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry. J. Mech. Phys. Solids, 13 (1965)119–134

DOI: 10.1016/0022-5096(65)90015-3

Google Scholar

[15] G. P. Tandon and G. J. Weng. Average stress in the matrix and effective moduli of randomly oriented composites. Compos. Sci. Technol., 27 (1986) 111–132

DOI: 10.1016/0266-3538(86)90067-9

Google Scholar

[16] T. Mori and K. Tanaka. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall., 21 (1973) 571– 574

DOI: 10.1016/0001-6160(73)90064-3

Google Scholar

[17] J.D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London, Ser. A, 241 (1957) 376–396

DOI: 10.1098/rspa.1957.0133

Google Scholar

[18] X. Chen, Y. Mai. Micromechanics of rubbertoughened polymers. J. Mater. Sci., 33 (1998) 3529–3539

Google Scholar