Cutting Data Influence on Cutting Forces and Surface Finish during Sintered Carbide Turning

Article Preview

Abstract:

The paper presents research of turning of super hard materials, like sintered carbides, with PCD (polycrystalline diamond) tools. Sintered carbides with cobalt, as metal binder, with good properties of abrasion resistant in high temperature environment are used as construction material. These materials, produced by a powder metallurgy process, are difficult-to-machine because of their high hardness and brittleness. In the work, a special attention was paid on the cutting force component Fc and surface finish, in the form of roughness parameter Ra, at variable cutting data (cutting speed vc, feed f and depth of cut ap). The test stand for research was consisted of the precise lathe, work piece (a tungsten carbides rod with 25% Co content), tool holder of DTGNR 2020K16 type, insert of TNGA type with PCD edges, Kistler force dynamometer and Taylor Hobson profilometer. Taguchi design and ANOVA analysis were applied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

148-153

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.A. Almeida, A.J.S. Fernandes, F.J. Oliveira, R.F. Silva, Semi-orthogonal turning of hardmetal with CVD diamond and PCD inserts at different cutting angles, Vacumm 83 (2009) 1218-1223.

DOI: 10.1016/j.vacuum.2009.03.029

Google Scholar

[2] T. Miyamoto, J. Fujiwara, K. Wakao, Influence of WC and Co in Cutting Cemented Carbides with PCD and CBN Tools, Key Engineering Materials 407 (2009) 428-431.

DOI: 10.4028/www.scientific.net/kem.407-408.428

Google Scholar

[3] L. Jaworska, Diament: otrzymywanie i zastosowanie w obróbce skrawania, WNT, Warszawa, (2007).

Google Scholar

[4] L.A. Dobrzański, Podstawy nauki o materiałach i metaloznawstwo: Materiały inżynierskie z podstawami projektowania materiałowego, WNT, Warszawa, 2002, pp.878-910.

Google Scholar

[5] M. Belmonte, P. Ferro, A.J.S. Fernandes, F.M. Costa, J. Sacramento, R.F. Silva, Wear resistant CVD diamond tools for turning of sintered hard metals, Diamond and Related Materials 12 (2003) 738-743.

DOI: 10.1016/s0925-9635(02)00302-3

Google Scholar

[6] Information on http: /www. mitsubishicarbide. com.

Google Scholar

[7] H. Tanaka, S. Shimada, N. Ikawa, M. Yoshinaga, Wear Mechanism of Diamond Cutting Tool in Machining of Steel, Key Engineering Materials 196 (2001) 69-78.

DOI: 10.4028/www.scientific.net/kem.196.69

Google Scholar

[8] M. Belmonte, P. Ferro, A.J.S. Fernandes, F.M. Costa, J. Sacramento, R.F. Silva, Cutting forces evaluation with tool wear in sintered hard metal turning with CVD diamond, Diamond and Related Materials 13 (2004) 843-847.

DOI: 10.1016/j.diamond.2003.11.018

Google Scholar

[9] S. Heo, Micro cutting of tungsten carbides with SEM direct observation method, KSME International Journal 18 (2004) 770-779.

DOI: 10.1007/bf02990295

Google Scholar

[10] S. Heo, Environmentally conscious hard turning of cemented carbide materials on the basis of micro-cutting in SEM: stressing four kinds of cemented carbides with PCD tools, J. Mechanical Science and Technology 22 (2008) 1383-1390.

DOI: 10.1007/s12206-008-0411-z

Google Scholar

[11] W. Zębala, R. Kowalczyk, Research of sintered carbide turning with a PCD tool, presented at the XXVII microCAD International Scientific Conference University of Miskolc.

Google Scholar

[12] C.W. Xiao, H. Ding, W.D. Li, K. Cheng, Design and Analysis of a Novel Sensing Cutting Tool for Precision Turning, Key Engineering Materials 516 (2012) 373-377.

DOI: 10.4028/www.scientific.net/kem.516.373

Google Scholar

[13] R.K. Roy, Design of Experiment Using Taguchi Approach: 16-step approach for applying the Taguchi method, John Wiley & Sons, (2001).

Google Scholar

[14] Information on http: /my. fit. edu.

Google Scholar

[15] U. Esme, Application of Taguchi method for the optimization of resistance spot welding process, The Arabian Journal for Science and Engineering 34 (2009) 519-522.

Google Scholar

[16] Y.P. Ballal, K.H. Inamdar, P.V. Patil, Application of Taguchi method for design of experiments in turning gray cast iron, IJERA 2 (2012) 1391-1397.

Google Scholar

[17] R. Unal, E.B. Dean, B. Edwin, Taguchi Approach to design optimization for quality and cost: an overview, presented at the Annual Conference of the International Society of Parametric Analysts (1991).

Google Scholar

[18] I.M. Dagawa, Surface Roughness Optimization of Some Machining Parameters in Turning operations using Taguchi Method, Advanced Materials Research 62-64 (2009) 613-620.

DOI: 10.4028/www.scientific.net/amr.62-64.613

Google Scholar

[19] N. Muthukrishnan, J.P. Davim, Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis, J. Materials Processing Technology 1 (2009) 225-232.

DOI: 10.1016/j.jmatprotec.2008.01.041

Google Scholar

[20] Z. Xueping, G. Erwei, C.R. Liu, Optimization of process parameter of residual stresses for hard turned surfaces, J. Materials Processing Technology 9 (2009) 4286-4291.

DOI: 10.1016/j.jmatprotec.2008.10.011

Google Scholar

[21] J. Verma, P. Agrawal, L. Bajpai, Turning parameter optimization for surface roughness of ASTM A242 type-1 alloys steel by Taguchi method, IJAET 3 (2012) 255-261.

Google Scholar