Verification of Manufacturing Accuracy of Mathematically Defined Shaped Surfaces on 3D CNC Milling Machine

Article Preview

Abstract:

Verification of programming of various control systems and production of mathematically defined shaped surfaces on 3D CNC milling machine is a challenging technological process. Appropriate design and optimization of tool path is essential for the production of high-quality surfaces with the required accuracy and roughness. This paper presents the design of shaped surfaces in various programming means in order to evaluate both the accuracy of the shape manufactured by the production machine and also by program created shapes for control systems of 3D milling machines. Based on the analysis of mathematically defined shaped surfaces to evaluate both accuracy of shape of 3D milling machine and also applied programs for the programming of the selected control system the shaped surface "Interface" was chosen. The advantage of mathematically described surface is a better way to evaluate the accuracy compare to surface modeled e.g. by Bezier ́s curves. Mathematically described surfaces enable us to optimize their shapes by available mathematical functions. Typical example the derivatives are, which make it possible to search extremes. Verification of the shaped surfaces accuracy according to created control programs was solved using the 3D Carl-Zeiss coordinate system and also HOLOS software. Verified programs for the NC machine programming were in CATIA V5, Pro/Engineer and EqCAM. The result is an optimally designed original EqCAM program for 3D CNC milling machine programming, which generates optimal NC codes and bypasses various built-in interpolations, and by precise control at every step it is possible to achieve maximum accuracy and quality of machined surface for each 3D CNC milling machine.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

423-430

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Bezier P. Numerical control: mathematics and applications. New York: Wiley; (1972).

Google Scholar

[2] FLISIAK, J. – JÓZWIK J.: Zastosowanie oprogramowania CAD/CAM w procesie kształcenia studentów. INFORMATYKA W KSZTAŁCENIU t. I. pod red. Lennik K., Borowski G., LTN (2006).

Google Scholar

[3] KRÁĽ, J. - KRÁĽ, J. ml.: A Contribution to Programming Numeric Control Led Machines Through the Use of Macros. In: Metallurgical. vol. 45, no. 3 (2006), pp.267-267. ISSN 0543-5846.

Google Scholar

[4] KRÁĽ, J. – KRÁĽ, J. ml.: Generovanie NC dát matematicky popísaných 3D plôch v riadiacom systéme Heidenhain. In: Acta Mechanica Slovaca. roč. 12, č. 3-a (2008), s. 215-218. ISSN 1335-2393.

DOI: 10.21496/ams.2011.042

Google Scholar

[5] KRÁĽ, J. – KRÁĽ, J. ml.: Tvorba 3D parametrických plôch v CAD systémoch, Plzeň 2009, ISSN 1336 – 5967 s. 26.

Google Scholar

[6] KRÁĽ, J. a kol. : Programovanie NC strojov. 1. vyd. Košice : TU, SjF, 2007. 181 s. ISBN 978-80-8073-827-3.

Google Scholar

[7] KRÁĽ, J. a kol.: Výskum rezných podmienok pre obrábanie nových materiálov a vplyv informačných technológií na flexibilitu výrobného procesu v podmienkach integrovanej výroby : Záverečná správa za celú dobu riešenia projektu. Košice : TU, SjF, 2005. 29 s.

Google Scholar

[8] KRÁĽ, J.: Obmedzujúce limity dnešných CNC obrábacích centier. In: Acta Mechanica Slovaca. roč. 12, č. 3-a (2008), s. 219-222. ISSN 1335-2393.

Google Scholar

[9] KRÁĽ, J.: Tvorba parametrických 3D plôch v CAD systémoch. In: Acta Mechanica Slovaca. roč. 12, č. 3-a (2008), s. 223-228. ISSN 1335-2393.

Google Scholar

[10] KRÁĽ, J.: Verifikácia presnosti NC a CNC trojosej frézovačky. In: Acta Mechanica Slovaca. roč. 12, č. 3 – a (2008), s. 229 – 232. ISSN 1335-2393.

Google Scholar

[11] Kundrak J, Mamalis AG, Markopoulos A: Finishing of hardened boreholes: Grinding or hard cutting. Materials and Manufacturing Processes 19 (6): pp.979-993, (2004).

DOI: 10.1081/amp-200034480

Google Scholar

[12] KURIC, I. – KOŠTURIAK, J. – JANÁČ, A. – PETERKA, J. – MARCINČIN, J. N.: Počítačom podporované systémy v strojárstve, ŽU v Žiline, 2002, 351 s.

Google Scholar

[13] Lin RS. Real-time surface interpolator for 3-D parametric surface machining on 3-axis machine tools. Machines, Tools & Manufact 2000; 40: 1513–26.

DOI: 10.1016/s0890-6955(00)00002-x

Google Scholar

[14] Poulachon, G., Moisan, A.: A Study of Chip Formation Mechanisms in High Speed Cutting of Hardened Steel. In: Scientific Fundamental of HSC, HANSER Mníchov 2001, s. 11-21.

Google Scholar

[15] ŘEHOŘ, J. – HOFMANN, P. – HORT, P. : Tvorba třísky a další průvodní jevy při HS frézování vysokolegované nástrojové oceli v zušlechtěném stavu. In: ICPM 2001 : mezinárodní kongres Přesné obrábění : sborník přednášek. Ústí nad Labem : UJEP, 2001. ISBN 80-7044-358-8, S. 199-208.

Google Scholar