Investigation of Residual Stresses in Case of Hard Turning of Case Hardened 16MnCr5 Steel

Article Preview

Abstract:

In this paper the residual stresses are investigated emerging in the machined layer during hard turning in case of chip removal done by different tool rake angles. By means of finite element method simulation we examined what rake angle is best to complete cutting so that favourable residual stress values are gained in the machined surface layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

501-504

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Weinert, D. Biermann: Spanende Fertigung. Vulkan Verl., Essen, (2008).

Google Scholar

[2] J. P. Davim (ed. ): Surface Integrity in Machining. Springer, London, (2010).

Google Scholar

[3] E. Brinksmeier: Prozeß- und Werkstückqualität in der Feinbearbeitung. Habilitation Universität Hannover. VDI Verlag, Düsseldorf, (1991).

Google Scholar

[4] J. Beňo. I. Maňková, M. Vrabel, D. Kottfer: Roughness measurement methodology for selection of tool inserts. Measurement, Vol. 46, 2013, pp.582-592.

DOI: 10.1016/j.measurement.2012.08.017

Google Scholar

[5] J. Kundrak: The scientific principles of increasing the effectiveness of inner surfaces' cutting with CBN tools. Academic Doctoral Dissertation. Kharkov, 1996 p.368. (In Russian).

Google Scholar

[6] W. Zębala, B. Słodki: Cutting data correction in Inconel 718 turning. International Journal of Advanced Manufacturing Technology, Vol. 63, 2013, pp.881-893.

DOI: 10.1007/s00170-012-4225-x

Google Scholar

[7] Y. Ohbuchi, T. Obikawa: Finite element modeling of formation in the domain of negative rake angle cutting. Transactions of the ASME, Vol. 125, 2003, pp.324-332.

DOI: 10.1115/1.1590999

Google Scholar

[8] J. Beňo: Theory of Metal Cutting (in Slovakian). Vienala Košice, (1999).

Google Scholar

[9] N. Fang: Tool-chip friction in machining with a large negative rake angle tool. Wear, Vol. 258, 2005, pp.890-897.

DOI: 10.1016/j.wear.2004.09.047

Google Scholar

[10] V. P. Astakhov: Metal Cutting Mechanics, CRC Press, Boca Raton, (1999).

Google Scholar

[11] Third Wave AdvantedgeTM User's Manual, Version 5. 9.

Google Scholar

[12] I. Al-Zkeri: Finite Element Modeling of Hard Turning. VDM Verl., Saarbrücken, (2008).

Google Scholar

[13] CSN 41 4220/ISO 683/11-73.

Google Scholar

[14] D. A. Stephenson, J. S. Agapiou: Metal Cutting Theory and Practice. CRC Press, Boca Raton USA, (2005).

Google Scholar

[15] G. Totten, M. Howes, T. Inone (ed. ): Handbook of Residual Stress and Deformation of Steel. ASM International, Ohio, 2002, pp.3-8., 437-453. ISBN 0-87170-729-2.

Google Scholar

[16] Y. Matsumoto, M. M. Barash, C. R. Liu: Residual Stress in the Machined Surface of Hardened Steel. ASME PED Vol 12. pp.193-204.

Google Scholar

[17] G. Szabo, J. Kundrak: Investigation on coherences between residual stresses and tool geometry by hard turning. Hungarian Journal of Industrial Chemistry. Vol. 39/2, 2011, pp.289-294.

Google Scholar

[18] Z. Pálmai, M. Takács, B. Zs. Farkas: Validation of new flank wear by different methods. Material Science Forum. Vol. 729, 2012. pp.169-174.

DOI: 10.4028/www.scientific.net/msf.729.169

Google Scholar