Leakage Current and Polarization Properties of (Bi0.5Na0.5)TiO3-BaTiO3 Single Crystals

Article Preview

Abstract:

Single crystal of ferroelectric (Bi,Na)TiO3BaTiO3 (BNTBT) with tetragonal P4mm structure grown by a top-seeded solution growth (TSSG) method at a high oxygen pressure (PO2) of 0.9 MPa and their properties were compared with those of the crystals grown at a PO2 of 0.1 MPa. The crystals obtained at PO2 = 0.9 MPa exhibited a remanent polarization (Pr) of 54 μC/cm2, which was much larger than those of the crystals grown at PO2 = 0.1 MPa (20 μC/cm2). It is suggested that the large Pr is attributed to a low oxygen vacancy concentration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-99

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Takenaka and K. Sakata: Ferroelectrics 95 (1989) 153.

Google Scholar

[2] T. Takenaka, K. Sakata, and K. Toda: Ferroelectrics 106 (1990) 375.

Google Scholar

[3] T. Takenaka, K. Maruyama, and K. Sakata: Jpn. J. Appl. Phys. 30 (1991) 2236.

Google Scholar

[4] Y. Watanabe, Y. Hiruma, H. Nagata, and T. Takenaka: Ferroelectrics 358 (2007) 1021.

Google Scholar

[5] K. Yoshii, Y. Hiruma, H. Nagata, and T. Takenaka: Jpn. J. Appl. Phys. 45 (2006) 4493.

Google Scholar

[6] G. O. Jones, J. Kreisel, V. Jennings, M. A. Geday, P. A. Thomas, and A. M. Glazer: Ferroelectrics 270 (2002) 1377.

Google Scholar

[7] G. O. Jones and P. A. Thomas: Acta Crystallogr., Sect. B 58 (2002) 168.

Google Scholar

[8] D. L. West and D. A. Payne: J. Am. Ceram. Soc. 86 (2003) 769.

Google Scholar

[9] D. L. West and D. A. Payne: J. Am. Ceram. Soc. 86 (2003) 192.

Google Scholar

[10] G. S. Xu, Z. Q. Duan, X. F. Wang, and D. F. Yang: J. Cryst. Growth 275 (2005) 113.

Google Scholar

[11] Y. Hosono, K. Harada, and Y. Yamashita: Jpn. J. Appl. Phys. 40 (2001) 5722.

Google Scholar

[12] Y. M. Chiang, G. W. Farrey, and A. N. Soukhojak: Appl. Phys. Lett. 73 (1998) 3683.

Google Scholar

[13] J. B. Babu, M. He, D. F. Zhang, X. L. Chen, and R. Dhanasekaran: Appl. Phys. Lett. 90 (2007) 102901.

Google Scholar

[14] Y. Noguchi, I. Tanabe, M. Suzuki, and M. Miyayama: J. Ceram. Soc. Jpn. 116 (2008) 994.

Google Scholar

[15] J. B. Babu, G. Madeswaran, M. He, D. F. Zhang, X. L. Chen, and R. Dhanasekaran: J. Cryst. Growth 310 (2008) 467.

Google Scholar

[16] W. W. Ge, H. Liu, X. Y. Zhao, X. M. Pan, T. H. He, D. Lin, H. Q. Xu, and H. S. Luo: J. Alloys Compd. 456 (2008) 503.

Google Scholar

[17] W. W. Ge, H. Liu, X. Y. Zhao, X. B. Li, X. M. Pan, D. Lin, H. Q. Xu, X. P. Jiang, and H. S. Luo: Appl. Phys. A 95 (2009) 761.

Google Scholar

[18] Q. H. Zhang, Y. Y. Zhang, F. F. Wang, D. Lin, X. B. Li, X. Y. Zhao, and H. S. Luo: J. Cryst. Growth 312 (2010) 457.

Google Scholar

[19] Y. Kitanaka, Y. Noguchi, and M. Miyayama: Jpn. J. Appl. Phys. 49 (2010) 09MC06.

Google Scholar

[20] K. Yamamoto, M. Suzuki, Y. Noguchi, and M. Miyayama: Jpn. J. Appl. Phys. 47 (2008) 7623.

Google Scholar

[21] M. Suzuki, A. Morishita, Y. Kitanaka, Y. Noguchi, and M. Miyayama: Jpn. J. Appl. Phys. 49 (2010) 09MD09.

Google Scholar

[22] Y. J. Noguchi, I. Miwa, Y. Goshima and M. Miyayama, Jpn. J. Appl. Phys., 39, L1259-L1262 (2000).

Google Scholar

[23] K. Yamamoto, Y. Kitanaka, M. Suzuki, M. Miyayama, Y. Noguchi, C. Moriyoshi and Y. Kuroiwa, Appl. Phys. Lett., 91, - (2007).

DOI: 10.1063/1.2800822

Google Scholar

[24] Y. Noguchi, T. Matsumoto and M. Miyayama, Jpn. J. Appl. Phys., 44, L570-L572 (2005).

Google Scholar

[25] Y. Noguchi, M. Soga, M. Takahashi and M. Miyayama, Jpn. J. Appl. Phys., 44, 6998-7002 (2005).

Google Scholar

[26] U. Robels and G. Arlt: J. Appl. Phys. 73 (1993) 3454.

Google Scholar

[27] H. Onozuka et al., Jpn. J. Appl. Phys., 50, 09NE07 (2011).

Google Scholar

[28] M. V. Raymond and D. M. Smyth: J. Phys. Chem. Solids 57 (1996) 1507.

Google Scholar