[1]
L. Reclaru, L. Ardelean, L. Rusu, C. Sinescu, Co-Cr material selection in prosthetic restoration: Laser sintering technology, Solid State Phenomena 188 (2012) 412-415.
DOI: 10.4028/www.scientific.net/ssp.188.412
Google Scholar
[2]
I. Yadroitsev, I. Smurov, Selective laser melting technology, Physics Procedia 5 (2010) 551-560.
DOI: 10.1016/j.phpro.2010.08.083
Google Scholar
[3]
R. Schenker, D.J. Beer, W.B. Preez, M.E. Thomas, P.W. Richter, Novel combination of reverse engineering and rapid prototyping in medicine, South African J Sci 95 (1999) 327–328.
Google Scholar
[4]
A. Colin, J.Y. Boire, A novel tool for rapid prototyping and development of simple 3D medical image processing applications on PCs, Comput Methods Programs Biomed 53(2) (1997) 87–92.
DOI: 10.1016/s0169-2607(97)01807-5
Google Scholar
[5]
C.K. Chua, S.M. Chou, S.C. Lin, K.H. Eu, K.F. Lew, Biomedical applications of rapid prototyping systems, Automeidca 17(1) (1998) 29–40.
Google Scholar
[6]
P.F. Jacobs, Rapid prototyping & manufacturing: fundamentals of stereolithography, Society of Manufacturing Engineers (1992), Dearborn, MI.
Google Scholar
[7]
T.M. Barker, W.J.S. Earwaker, N. Frost, G. Wakeley, Integration of 3D medical imaging and rapid prototyping to create stereolithgraphic models, Australas Phys Eng Sci Med 16 (2) (1993) 79–85.
Google Scholar
[8]
Q. Liu, M. C. Leu, Stephen, M. Schmitt, Rapid prototyping in dentistry: technology and application, Int J Adv Manuf Technol 29 (2006) 317–335.
DOI: 10.1007/s00170-005-2523-2
Google Scholar
[9]
A. Azari, S. Nikzad, The evolution of rapid prototyping in dentistry: a review, Rapid Prototyping J. 15 (2009) 216 – 225.
DOI: 10.1108/13552540910961946
Google Scholar
[10]
P.D. Hilton, P.F. Jacobs M. Dekker, Rapid tooling: technologies and industrial application, New York, (2000).
Google Scholar