Biopolymer Blends as Potential Biomaterials and Cosmetic Materials

Article Preview

Abstract:

Blends of two polymer, namely chitosan with silk fibroin or partially hydrolysed polyacrylamide (HPAM) were prepared. The surface properties of chitosan/silk fibroin and chitosan/HPAM blended films were investigated using the technique of Atomic Force Microscopy (AFM) and by means of contact angle measurements allowing the calculation of surface free energy. Measurements of the contact angle for diiodomethane (D), and glycerol (G) on the surface of chitosan films and chitosan/silk fibroin films were made and surface free energy was calculated. It was found that chitosan/silk fibroin blend surface is enriched in high surface energy component i.e. silk fibroin. The surface roughness of chitosan, silk fibroin, HPAM, chitosan/silk fibroin and chitosan/HPAM blended films differs with the composition of the blend. Film-forming polymeric blends can be potentially used as biomaterials and cosmetic materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-100

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.Vert, Polymeric biomaterials: strategies of the past vs. strategies of the future, Prog. Polym. Sci. 32 (2007) 755-761.

DOI: 10.1016/j.progpolymsci.2007.05.006

Google Scholar

[2] A. Sionkowska, Current research on the blends of natural and synthetic polymers: Review", Prog. Polym. Sci. 36 (2011) 1254-1276.

Google Scholar

[3] A. Sionkowska, in: Current Topics in Polymer Research, edited by R.K. Bregg, NOVA Publishers USA (2005) 125-168.

Google Scholar

[4] M.G. Cascone, Dynamic-mechanical properties of bioartificial polymeric materials. Polym. Int. 43 (1997) 55-69.

DOI: 10.1002/(sici)1097-0126(199705)43:1<55::aid-pi762>3.0.co;2-#

Google Scholar

[5] P. Giusti, L. Lazzeri, S. Petris, M. Palla, M.G. Cascone, Collagen-based new bioartificial polymeric materials,. Biomaterials 15 (1994) 1229-1233.

DOI: 10.1016/0142-9612(94)90274-7

Google Scholar

[6] M.H Struszczyk, Chitin and Chitosan: Part II: Applications of chitosan. Polimery 47 (2002) 396-403.

DOI: 10.14314/polimery.2002.396

Google Scholar

[7] R. Muzzarelli, V. Baldassarre, F. Conti, P. Ferrara, G. Biagini, G. Gazzanelli, V. Vasi, Biological activity of chitosan: ultrastructural study. Biomaterials 9 (1988) 247-252.

DOI: 10.1016/0142-9612(88)90092-0

Google Scholar

[8] N. Majeti, R. Kumar R, A review of chitin and chitosan applications. React. Funct. Polym. 46 (2000) 1-27.

Google Scholar

[9] M. Rinaudo, Chitin and chitosan: Properties and applications. Progr. Polym. Sci. 31 (2006) 603-632.

Google Scholar

[10] D. Kaplan, W. Wade Adams, B. Farmer, C. Viney, Chapter 1, Silk: Biology, structure, properties, and genetics, Am. Chem. Soc. New York 1994.

Google Scholar

[11] E. S. Sashina, A. M. Bochek, N. P. Novoselov, and D. A. Kirichenko, Structure and Solubility of Natural Silk Fibroin, Russ. J. Appl. Chem. 79 (2006) 869-875.

DOI: 10.1134/s1070427206060012

Google Scholar

[12] A. Sionkowska, A. Planecka, The influence of UV radiation on silk fibroin, Polym. Degrad. Stab. 96 (2011) 523-28.

DOI: 10.1016/j.polymdegradstab.2011.01.001

Google Scholar

[13] O. Hakimi, D. P. Knight, F. Vollrath, P. Vadgama, Spider and mulberry silkworm silks as compatible biomaterials, Composites: Part B 38 (2007) 324–337.

DOI: 10.1016/j.compositesb.2006.06.012

Google Scholar

[14] K. Lewandowska, Comparative studies of rheological properties of polyacrylamide and partially hydrolyzed polyacrylamide solutions. J. Appl. Polym. Sci. 103 (2007) 2235-2241.

DOI: 10.1002/app.25247

Google Scholar

[15] E. Marsano, P. Corsini, M. Canetti, G. Freddi, Regenerated cellulose-silk fibroin blends fibers. Int. J. Biol. Macromol. 43 (2008) 106-114.

DOI: 10.1016/j.ijbiomac.2008.03.009

Google Scholar

[16] S. Hirano, T. Nakahira, M. Zhang, M. Nakagawa, M. Yoshikawa, T. Midorikawa, Wet-spun blend biofibers of cellulose–silk fibroin and cellulose–chitin–silk fibroin. Carbohydr. Polym. 47 (2002) 121.

DOI: 10.1016/s0144-8617(01)00171-0

Google Scholar

[17] C.R. Yoo, I.S. Yeo, K.E. Park, J.H. Park, S. Lee, W.H. Park, B.M. Min, Int. J. Biol. Macromol. Effect of chitin/silk fibroin nanofibrous bicomponent structures on interaction with human epidermal keratinocytes.42 (2008) 324-334.

DOI: 10.1016/j.ijbiomac.2007.12.004

Google Scholar

[18] R. Schueller, P. Romanowski, Beginning Cosmetic Chemistry, 3rd Edition. Allured Buisness Media, USA (2009) 73-197.

Google Scholar

[19] B. Bhushan, N. Chen, AFM studies of environmental effects on nanomechanical properties and cellular structure of human hair, Ultramicroscopy 106 (2006) 755-64.

DOI: 10.1016/j.ultramic.2005.12.010

Google Scholar

[20] Y. Kamath, S. B. Hornby, H. D. Weigmann, Mechanical amd fractographic behavior of Negroid hair, Journal of the Society of Cosmetic Chemistry 35 (1984) 21-43.

Google Scholar