UV Light as a Tool for Surface Modification of Polymeric Biomaterials

Article Preview

Abstract:

UV light as a tool for surface modification of polymeric biomaterials was considered. In the present work the modification of the surface properties of collagen films, chitosan films and silk fibroin films by UV-irradiation is presented. It was found that the contact angle and the surface free energy were altered by UV-irradiation of biopolymeric films. Moreover, the surface roughness of biopolymeric films was altered by UV-irradiation. UV-irradiation caused the decrease of surface roughness of collagen films, chitosan films and silk fibroin films. KrF laser treatment caused a significant damage of the surface of biopolymeric films and due to the ablation process the micro-foam was formed. As a conclusion one can say that UV light can be used for modification of surface polarity, surface roughness and for 3D formation structure on the biopolymeric films. The modification by UV light can be save method of biomaterials treatment without any chemicals used for alterations of the surface properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-86

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Fischbach, Tessmar J, Lucke A, Schnell E, Schmeer G, Blunk T. Does UV irradiation affect polymer properties relevant to tissue engineering? Surf. Sci. 491 (2001) 333- 345.

DOI: 10.1016/s0039-6028(01)01297-3

Google Scholar

[2] A. Sionkowska, Current research on the blends of natural and synthetic polymers: Review", Prog. Polym. Sci. 36 (2011) 1254-1276.

Google Scholar

[3] H. Kaczmarek, J. Kowalonek, A. Szalla, A. Sionkowska, Surface modification of thin polymeric films by air-plasma or UV-irradiation. Surf. Sci. 507-510 (2002) 883-888.

DOI: 10.1016/s0039-6028(02)01367-5

Google Scholar

[4] D.G. Castner, B.D. Ratner, Biomedical Surface Science: Foundations to Frontiers. Surf. Sci. 500 (2002) 28-60.

DOI: 10.1016/s0039-6028(01)01587-4

Google Scholar

[5] C.H. Lee, A. Singla, Y. Lee, Biomedical applications of collagen. Int. J. Pharm. 221 (2001) 1- 22.

Google Scholar

[6] K.P. Rao, Recent developments of collagen-based materials for medical applications and drug delivery systems. J. Biomater. Sci. Polym. Ed. 7 (1995) 623-631.

Google Scholar

[7] A. Sionkowska, in: Current Topics in Polymer Research, edited by R.K. Bregg, NOVA Publishers USA (2005) 125-168.

Google Scholar

[8] O. Hakimi, D. P. Knight, F. Vollrath, P. Vadgama, Spider and mulberry silkworm silks as compatible biomaterials, Composites: Part B 38 (2007) 324–337.

DOI: 10.1016/j.compositesb.2006.06.012

Google Scholar

[9] D. Kaplan, W. Wade Adams, B. Farmer, C. Viney, Chapter 1, Silk: Biology, structure, properties, and genetics, Am. Chem. Soc. New York 1994.

Google Scholar

[10] E. S. Sashina, A. M. Bochek, N. P. Novoselov, and D. A. Kirichenko, Structure and Solubility of Natural Silk Fibroin, Russ. J. Appl. Chem. 79 (2006) 869-875.

DOI: 10.1134/s1070427206060012

Google Scholar

[11] M.H Struszczyk, Chitin and Chitosan: Part II: Applications of chitosan. Polimery 47 (2002) 396-403.

DOI: 10.14314/polimery.2002.396

Google Scholar

[12] R. Muzzarelli, V. Baldassarre, F. Conti, P. Ferrara, G. Biagini, G. Gazzanelli, V. Vasi, Biological activity of chitosan: ultrastructural study. Biomaterials 9 (1988) 247-252.

DOI: 10.1016/0142-9612(88)90092-0

Google Scholar

[13] N. Majeti, R. Kumar R, A review of chitin and chitosan applications. React. Funct. Polym. 46 (2000) 1-27.

Google Scholar

[14] M. Rinaudo, Chitin and chitosan: Properties and applications. Progr. Polym. Sci. 31 (2006) 603-632.

Google Scholar

[15] A. Sionkowska, A. Planecka, The influence of UV radiation on silk fibroin, Polym. Degrad. Stab. 96 (2011) 523-28.

DOI: 10.1016/j.polymdegradstab.2011.01.001

Google Scholar

[16] A. Sionkowska, A. Kaminska, C.A. Miles, A.J. Bailey, The effect of UV radiation on the structure and properties of collagen, Polimery 6 (2001) 379-384.

DOI: 10.14314/polimery.2001.379

Google Scholar

[17] C.A. Miles,  A. Sionkowska, S.L. Hulin, T.J. Sims, N.C. Avery, A.J. Bailey, Identification of an intermediate state in the helix-coil degradation of collagen by ultraviolet light, Journal of Biological Chemistry 275 (2000) 33014-33018.

DOI: 10.1074/jbc.m002346200

Google Scholar

[18] M. Wiśniewski, A.  Sionkowska, H. Kaczmarek,  S. Lazare, V. Tokarev, C. Belin, Spectroscopic study of a KrF excimer laser treated surface of the thin collagen films, .J.  Photochem. Photobiol. Part A: Chemistry 188 (2007) 192-199.

DOI: 10.1016/j.jphotochem.2006.12.012

Google Scholar

[19] S. Lazare, V. Tokarev, A. Sionkowska, M. Wiśniewski, Negative pressure model for surface foaming of collagen and other biopolymer films by KrF excimer laser ablation, Journal of Physics: Conference Series 59 (2007) 543-547.

DOI: 10.1088/1742-6596/59/1/116

Google Scholar

[20] S. Lazare, A. Sionkowska, M. Zaborowicz, A. Planecka, J. Lopez, M. Dijoux, C. Loumena, N-C. Hernandez, Bombyx Mori Silk Protein Films Microprocessing with a Nanosecond Ultraviolet Laser and a Femtosecond Laser Workstation: Theory and Experiments, Applied Physics A, 106 (2012) 67-77.

DOI: 10.1007/s00339-011-6639-y

Google Scholar