[1]
Information on http: /www. chinadaily. com. cn/china/2006-11/29/content_746362. htm.
Google Scholar
[2]
C.J. Francois, J.H. Saleh, Satellite and satellite subsystems reliability: Statistical data analysis and modeling, Reliability Engineering and System Safety. 94 (2009) 1718-1728.
DOI: 10.1016/j.ress.2009.05.004
Google Scholar
[3]
K.W. Lips, V.J. Modi, Three-Dimensional Response Characteristics for Spacecraft with Deploying Flexible Appendages, J. Guidance And Control. 4 (1980) 650-656.
DOI: 10.2514/3.56123
Google Scholar
[4]
Hagedorn, P., The Rayleigh–Ritz method with quasi-comparison functions in nonself-adjoint problems, Journal of Vibration and Acoustics. 115 (1993) 280-284.
DOI: 10.1115/1.2930346
Google Scholar
[5]
Roberson, R.E. and Schwertassek, R., Dynamics of Multibody Systems, Springer-Verlag, Berlin, (1988).
Google Scholar
[6]
T. S. John, S. T. Walter, Selection of Component Modes for Flexible Multibody Simulation, J. Guidance. 14 (1990) 278-276.
Google Scholar
[7]
W. Oskar, W. Simon, Simulation of Deployment of a Flexible Solar Array, Multibody System Dynamics. 7 (2002) 101-125.
Google Scholar
[8]
A.B. Olivier, R. Jesus, Modeling of joints with clearance in flexible multibody systems, International Journal of Solid and Structures. 39 (2002) 41-63.
Google Scholar
[9]
S. Bakhtiar, An Analytical and Experimental Investigation of the Dynamic Response of a Four-bar Mechanism with Clearance in the Coupler-Rocker Bearing, 1984, M.S. Thesis, MEL, Michigan State University.
Google Scholar
[10]
R.S. Haines, An experimental investigation into the dynamic behaviour of revolute joints with varying degrees of clearance, Mechanism and Machine Theory. 20 (1985) 221-231.
DOI: 10.1016/0094-114x(85)90009-6
Google Scholar
[11]
T.J. Li, J. Guo, Dynamic characteristics analysis of deployable space structures considering joint clearance, Acta Astronautica. 68 (2011) 975-983.
DOI: 10.1016/j.actaastro.2010.08.039
Google Scholar
[12]
P. Ravn, A Continuous Analysis Method for Planar Multibody Systems with Joint Clearance. Multibody System Dynamics. 2 (1998) 1-24.
Google Scholar
[13]
J. Rhee, A. Akay, Dynamic response of a revolute joint with clearance, Mech. Mach. Theory. 31 (1996) 121-134.
DOI: 10.1016/0094-114x(95)00061-3
Google Scholar
[14]
H.M. Lankarani, P.E.A. Nikravesh, Contact force model with hysteresis damping for Impact analysis of multibody systems, ASME J Mech Des. 122 (1990) 369-76.
DOI: 10.1115/1.2912617
Google Scholar
[15]
Z.F. Bai, Y. Zhao, Dynamic behaviour analysis of planar mechanical systems with clearance in revolute joints using a new hybrid contact force model, International Journal of Mechanical Sciences. 54 (2012) 190-205.
DOI: 10.1016/j.ijmecsci.2011.10.009
Google Scholar
[16]
X.Z. Li, Z.F. Bai, Y. Zhao, Dynamic response of solar panel deployment on spacecraft system considering joint clearance, Acta Astronautica. 8 (2012) 174-185.
DOI: 10.1016/j.actaastro.2012.07.020
Google Scholar
[17]
J.L. Li, S.Z. Yan, R.Y. Cai, Thermal analysis of composite solar array subjected to space heat flux, Aerospace Science and Technology. http: /dx. doi. org/10. 1016/j. ast. (2012).
DOI: 10.1016/j.ast.2012.06.010
Google Scholar
[18]
E.A. Thornton, Y.A. Kim, Thermally induced bending vibrations of a flexible rolled-up solar array, Journal Of Spacecraft And Rockets. 30 (1993) 438-448.
DOI: 10.2514/3.25550
Google Scholar
[19]
E.A. Thornton, D.W. Gulick, G.P. Chini, Thermally induced vibrations of a self-shadowed split-blanket solar array, Journal Of Spacecraft And Rockets. 32 (1995) 302-311.
DOI: 10.2514/3.26610
Google Scholar
[20]
J.D. Johnston, E.A. Thornton, Thermally Induced Attitude Dynamics of a Spacecraft with a Flexible Appendage, Journal Of Guidance, Control, And Dynamics. 21 (1998) 581-587.
DOI: 10.2514/2.4297
Google Scholar
[21]
D. Yong, M.D. Xue, J.K. Kim, Thermo-structural analysis of space structures using fourier tube elements. 36 (2005) 289-297.
DOI: 10.1007/s00466-005-0666-5
Google Scholar
[22]
M.D. Xue, J. Duan, Z.H. Xiang, Thermally-induced bending-torsion coupling vibration of large scale space structures, Comput Mech. 40 (2007) 707-723.
DOI: 10.1007/s00466-006-0134-x
Google Scholar
[23]
J. Duan, Z.H. Xiang, M.D. Xue, Thermal-dynamic coupling analysis of large space structures considering geometric nonlinearity, International Journal of Structural Stability and Dynamics. 8 (2008) 569-596.
DOI: 10.1142/s0219455408002806
Google Scholar
[24]
D. Lichodziejewski, G. Veal, R. Helms, R. Freeland, Inflatable rigidizable solar array for small satellites, 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Confere.
DOI: 10.2514/6.2003-1898
Google Scholar
[25]
Main J. A., Carlin R. A., Garcia E., Peterson S.W., Strauss A.M., Dynamic analysis of space- based inflated beam structures, Journal of the Acoustical Society of America. 97 (1994) 1035–1045.
DOI: 10.1121/1.412216
Google Scholar
[26]
D. Todd Griffith, John A. Main, Experimental Modal Analysis and Damping Estimation for an Inflated Thin-Film Torus, Journal Of Guidance, Control, And Dynamics. 25 (2002) 609-617.
DOI: 10.2514/2.4934
Google Scholar
[27]
H. Song, S. W. Smith, and J. A. Main, Dynamic Testing of an Inflatable, Self-Supporting, Unpressurized Thin-Film Torus, Journal Of Guidance, Control, And Dynamics. 29 (2006) 839-845.
DOI: 10.2514/1.16509
Google Scholar