Non-Destructive Detection of Weld Seams in Extruded Aluminum Profiles

Article Preview

Abstract:

The present study focuses on the feasibility of non-destructive testing methods for the detection of transverse and longitudinal weld seams in extruded aluminum alloys. Two extrusion trials using billet on billet extrusion with a porthole die producing both types of weld seams were conducted. First, two billets of different types of alloy, AlMgSi1 (EN AW-6082) and AlZn4.5Mg1 (EN AW-7020), were extruded. In a second trial, two billets of AlZn4.5Mg1 were processed. The produced profiles were then tested by non-destructive testing using a tactile eddy current sensor as well as an encasing sensor at room temperature. The measured signals of both sensors were then evaluated and compared. Microstructural analyses have been carried out to correlate the occurrence of transverse and longitudinal weld seams with the results of the non-destructive testing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-110

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Altenpohl, Aluminium von innen, fifth ed., Aluminium-Verlag, Düsseldorf, (1994).

Google Scholar

[2] M. Bauser, G. Sauer, K. Siegert: Strangpressen, second ed., Aluminium-Verlag, Düsseldorf, (2001).

Google Scholar

[3] R. F. Tylecote, Solid phase welding of metals, Edward Arnold (Publishers) Ltd., London (1968).

Google Scholar

[4] H. Valberg, Extrusion welding in aluminium extrusion, International Journal of Materials and Product Technology, Vol. 17, No. 7 (2002), pp.497-556.

DOI: 10.1504/ijmpt.2002.001317

Google Scholar

[5] A. J. den Bakker, W. H. Sillekens, R. J. Werkhoven, Experimental Study of Longitudinal Weld-Seam Properties in Tubular AA6060 and AA6082 Extrusions, Extrusion Technology 08, ET Foundation, Wauconda, (2008).

Google Scholar

[6] L. Donati, L. Tomesani, The effect of die design on the production and seam weld quality of extruded aluminum profiles, Journal of Materials Processing Technology, Vol. 164–165 (2005), p.1025–1031.

DOI: 10.1016/j.jmatprotec.2005.02.156

Google Scholar

[7] L. Donati, L. Tomesani, G. Minak, Characterization of seam weld quality in AA6082 extruded profiles, Journal of Materials Processing Technology, Vol. 191 (2007), p.127–131.

DOI: 10.1016/j.jmatprotec.2007.03.073

Google Scholar

[8] L. Donati, L. Tomesani, V. Giacomelli, S. Andreoli, Seam Welds Quality in AA6060 Alloy, Extrusion Technology 08, ET Foundation, Wauconda, (2008).

Google Scholar

[9] M. Engelhardt, N. Grittner, D. Bormann, Fr. -W. Bach, Mikrostrukturelle Pressschweißnahtcharakterisierung im strangpressten Zustand für Al-Mg-Si-Legierungen, Materialwissenschaft und Werkstofftechnik, Vol. 42, No. 6, pp.531-541.

DOI: 10.1002/mawe.201100775

Google Scholar

[10] M. Engelhardt, N. Grittner, C. Klose, Fr. -W. Bach, Influence of process fluctuations on weld seam properties in aluminum alloy extrusion, in: H. Weiland, A. D. Rollett, W. A. Cassada, 13th International Conference on Aluminum Alloys (ICAA13), TMS (The Minerals, Metals & Materials Society), 2012, pp.1843-1850.

DOI: 10.1002/9781118495292.ch276

Google Scholar

[11] J. van Rijkom, P.H. Bolt, D. Weeke, A Review of New Approaches and Technologies in Extrusion Welds Related to the Background of Existing Knowledge, in: Proceedings of International Aluminum Extrusion Technology Seminar, Aluminum Extruders Council, 2000, pp.249-260.

Google Scholar

[12] N. Nanninga, C. White, R. Dickson, Charge Weld Effects on High Cycle Fatigue Behavior of a Hollow Extruded AA6082 Profile, Journal of Materials Engineering and Performance; Vol. 20, No. 7 (2011); pp.1235-1241.

DOI: 10.1007/s11665-010-9755-5

Google Scholar

[13] A. Loukus, G. Subhash, M. Imaninejad, Mechanical properties and microstructural characterization of extrusion welds in AA6082-T4, Journal of Materials Science, Vol. 39 (2004), pp.6561-6569.

DOI: 10.1023/b:jmsc.0000044896.46771.ba

Google Scholar

[14] S. Steeb, Zerstörungsfreie Werkstück- und Werkstoffprüfung, third ed., Expert-Verlag, Renningen, (2005).

Google Scholar

[15] J. Vetterlein, H. Klümper-Westkamp, T. Hirsch, P. Mayr, Einsatz des Wirbelstromverfahrens zur in situ-Kontrolle von Wärmebehandlungsvorgängen, HTM. Härterei-technische Mitteilungen, Vol. 58, No. 2 (2003), pp.83-89.

Google Scholar

[16] J. Vetterlein, H. Klümper-Westkamp, T. Hirsch, P. Mayr, Eddy Current Testing at High Temperatures for Controlling Heat Treatment Process, in: International Symposium on Non-Destructive Testing in Civil Engineering, DGZfP, Berlin, (2003).

Google Scholar

[17] M. Zergoug, S. Lebaili, H. Boudjellal, A. Benchaala, Relation between mechanical microhardness and impedance variations in eddy current testing, NDT&E International, Vol. 37 (2004), p.65–72.

DOI: 10.1016/j.ndteint.2003.09.002

Google Scholar

[18] C. H. Gür, I. Yildiz, Determining the impact toughness of age-hardened 2024 al-alloy by NDT measurements, in: Proceedings of 16th World Conference on NDT, Aug 30 – Sep 3 2004, Montreal.

Google Scholar

[20] A. Moreau, Laser-Ultrasonic Characterization of the Microstructure of Aluminium, Materials Science Forum, Vol. 519-521 (2006), pp.1373-1378.

DOI: 10.4028/www.scientific.net/msf.519-521.1373

Google Scholar

[21] N. Grittner, D. Bormann, R. Springer, W. Reimche, Fr. -W. Bach, Zerstörungsfreie Messmethoden zur Bestimmung des Warmauslagerungszustandes von Aluminiumlegierungen am Beispiel der Legierung EN AW-6082, Materialwissenschaft und Werkstofftechnik, Vol. 41, No. 8 (2010).

DOI: 10.1002/mawe.201000619

Google Scholar

[22] D. Altenpohl, Aluminium und Aluminiumlegierungen, first ed., Springer-Verlag, Berlin-Heidelberg-New York, (1965).

Google Scholar