[1]
Hoshino S., Gunasekera J.S., An upper-bound solution for the extrusion of square section from round bar through converging dies. In: Proceedings of the 21st Machine Tool Design Research Conference, 1980; 97.
DOI: 10.1007/978-1-349-05861-7_14
Google Scholar
[2]
Kiuchi M., Kishi H., Ishikawa M., Study on non-symmetric extrusion and drawing. In: Proceedings of the 22nd International Machine Tool Design Research Conference, 1981; 523.
DOI: 10.1007/978-1-349-06281-2_65
Google Scholar
[3]
Park Y.B., Yoon J.H., Yang D.Y., Finite element analysis of steady-state three-dimensional helical extrusion of twisted sections using recurrent boundary conditions. Int. J. Mech. Sci. 1994; 36 (2): 137–148.
DOI: 10.1016/0020-7403(94)90081-7
Google Scholar
[4]
Nagpal V., Altan T., Analysis of the three dimension metal flow in extrusion of shapes with the use of dual stream functions, in: 3rd NAMRC Conference, May 1975; Pittsburgh.
Google Scholar
[5]
Juneja B.I., Prakash R., An analysis for drawing and extrusion of polygonal sections, Int. J. Machine Tool Design Res. 1975; 15: 1–13.
DOI: 10.1016/0020-7357(75)90002-5
Google Scholar
[6]
Yang D.Y., Lee C.H., Altan T., Analysis of three dimensional extrusion sections through curved dies by conformal transformation, Int. J. Mech. Sci. 1978; 19.
DOI: 10.1016/0020-7403(78)90012-7
Google Scholar
[7]
Yang D.Y., Kum M.U., Lee C.H., A new approach for generalized three dimensional extrusion of sections from round billets by conformal transformation, in: IUTAM Symposium on Metal Forming Plasticity, Germany, 1979: 204–211.
DOI: 10.1007/978-3-642-81355-9_13
Google Scholar
[8]
Yang D.Y., Lange K., Analysis of hydrofilm extrusion of three-dimensional shape from round billets, Int. J. Mech. Sci. 1984; 26: 1–19.
DOI: 10.1016/0020-7403(84)90037-7
Google Scholar
[9]
Chitkara N.R., Celik K.F., A generalised CAD/CAM solution to the three-dimensional off-centric extrusion of shaped sections: analysis, Int. J. Mech. Sci. 2000; 42: 273-294.
DOI: 10.1016/s0020-7403(98)00129-5
Google Scholar
[10]
Abrinia K., Zare H., A new method of solution for the extrusion of sections with complexities. In: Proceedings of the11th ISME Conference, Ferdousi University, Mashhad, (2003).
Google Scholar
[11]
Lee S.R., Lee Y.K., Park C.H., Yang D.Y., A new method of preform design in hot forging by using electric field theory, Int. J. Mech. Sci. 2002; 44: 773-792.
DOI: 10.1016/s0020-7403(02)00003-6
Google Scholar
[12]
Xiaona W., Fuguo L., A quasi-equi potential field simulation for preform design of P/M superalloy disk, Chin J Aeronaut. 2009; 22: 81–86.
DOI: 10.1016/s1000-9361(08)60072-2
Google Scholar
[13]
Tabatabaei S.A., Faraji G., Mashadi M. M., et al., Preform shape design in tube hydroforming process using equi-Potential line method, Mater. Manuf. Process. 2013; 28(3): 260 –264.
DOI: 10.1080/10426914.2012.667892
Google Scholar
[14]
Chen H., Zhao G., Zhang C., et. al, Numerical Simulation of Extrusion Process and Die Structure Optimization for a Complex Aluminum Multicavity Wallboard of High-Speed Train, J. Mater. Manuf. Process. 2011; 26: 1530–1538.
DOI: 10.1080/10426914.2011.551950
Google Scholar
[15]
Ulysse P., Optimal extrusion die design to achieve flow balance, Int. J. Mach. Tool. Manu. 1999; 39: 1047–1064.
DOI: 10.1016/s0890-6955(98)00082-0
Google Scholar
[16]
Ulysse P., Optimal extrusion die design to achieve flow balance using FE and optimization methods, Int. J. Mech. Sci. 2002; 44: 319 –341.
DOI: 10.1016/s0020-7403(01)00093-5
Google Scholar
[17]
Chung J.S., Hwang S.M., Application of a genetic algorithm to the optimal design of the die shape in extrusion, J. Mater. Process. Technol. 1997; 72: 69–77.
Google Scholar
[18]
Gordona W.A., Van Tyne C.J., Moon Y.H., Overview of adaptable die design for extrusions, J. Mater. Process. Technol. 2007; 187–188: 662–667.
DOI: 10.1016/j.jmatprotec.2006.11.158
Google Scholar
[19]
Cai J., Li F., Liu T., A new approach of preform design based on 3D electrostatic field simulation and geometric transformation, Int. J. Adv. Manuf. Technol. 2011; 56: 579-588.
DOI: 10.1007/s00170-011-3216-7
Google Scholar
[20]
Drucker D. C., Prager W., Greenberg H.J., Extended Limit Design Theorems for Continuous Media, Q. J. Mech. Appl. Math. 1952; 9: 381–389.
DOI: 10.1090/qam/45573
Google Scholar
[21]
Chitkara, N.R., Celik, K.F., Extrusion of non-symmetric T-shaped sections, an analysis and some experiments. Int. J. Mech. Sci. 43, 2961–2987(2001).
DOI: 10.1016/s0020-7403(01)00044-3
Google Scholar
[22]
Celik, K.F., Chitkara, N.R., Extrusion of non-symmetric U- and I-shaped sections, through ruled-surface dies: numerical simulations and some experiments. Int. J. Mech. Sci. 44, 217–246 (2002).
DOI: 10.1016/s0020-7403(01)00055-8
Google Scholar
[23]
Johnson W., Mellor P.B., Engineering Plasticity. Ellis Horwood Ltd, (1983).
Google Scholar
[24]
Abrinia K., Fazlirad A., Three-dimensional analysis of shape rolling using a generalized upper bound approach J. Mater. Process. Technol. 2009; 209: 3264-3277.
DOI: 10.1016/j.jmatprotec.2008.07.033
Google Scholar
[25]
Ponalagusamy R., Narayanasamy R., Srinivasan P., Design and development of streamlined extrusion dies a Bezier curve approach, J. Mater. Process. Technol. 2005; 161: 375–380.
DOI: 10.1016/j.jmatprotec.2003.08.005
Google Scholar
[26]
Tabatabaei S. A., Abrinia K., Besharati Givi M.K., et al., Application of the Equi-Potential Lines Method in Upper Bound Estimation of the Extrusion Pressure, Mater. Manuf. Process. 2013; 28(3): 271 – 275.
DOI: 10.1080/10426914.2012.709350
Google Scholar