[1]
M. Bauser, G. Sauer, K. Siegert, Extrusion, The Material Information Society, Dusseldorf, Germany, (2006).
Google Scholar
[2]
D. Lesniak, W. Libura, Extrusion of sections with varying thickness through pocket dies, Journal of Materials Processing Technology, Vol. 194 (2007), p.38–45.
DOI: 10.1016/j.jmatprotec.2007.03.123
Google Scholar
[3]
J. Lof, Y. Blokhuis, FEM simulations of the extrusion of complex thin-walled aluminium sections, Journal of Materials Processing Technology, Vol. 122 (2002), p.344–354.
DOI: 10.1016/s0924-0136(01)01266-3
Google Scholar
[4]
C. Zhanga, G. Zhao, Z. Chena, H. Chen, F. Kou, Effect of extrusion stem speed on extrusion process for a hollow aluminum profile, Materials Science and Engineering B, Vol. 177 (2012), p.1691–1697.
DOI: 10.1016/j.mseb.2011.09.041
Google Scholar
[5]
J. Zhou, L. Li, J. Duszczyk, Computer simulated and experimentally verified isothermal extrusion of 7075 aluminium through continuous ram speed variation, Journal of Materials Processing Technology, Vol. 146 (2004), p.203–212.
DOI: 10.1016/j.jmatprotec.2003.10.018
Google Scholar
[6]
L. Li, J. Zhou, J. Duszczyk, Prediction of temperature evolution during the extrusion of 7075 aluminium alloy at various ram speeds by means of 3D FEM simulation, Journal of Materials Processing Technology, Vol. 145 (2004), p.360–370.
DOI: 10.1016/j.jmatprotec.2003.09.003
Google Scholar
[7]
R. Hölker, A. Jäger, N. Ben Khalifa, A. Erman Tekkaya, New Concepts for Cooling of Extrusion Dies Manufactured by Rapid Tooling, Key Engineering Materials, Vol. 491 (2011), pp.223-230.
DOI: 10.4028/www.scientific.net/kem.491.223
Google Scholar
[8]
O. Richmond, W.A. Spitzig, Pressure dependence and dilatancy of plastic flow. In: Theoretical and Applied Mechanics, Proc. of the 15th International Congress of Theoretical and Applied Mechanics, Toronto, Canada. North-Holland Publ., Amsterdam, Netherlands, 1980, p.377.
Google Scholar
[9]
C.D. Wilson, A critical reexamination of classical metal plasticity, Journal of Applied Mechanics, Transactions ASME, Vol. 69 (1) (2002), p.63–68.
Google Scholar
[10]
A. Needleman, V. Tvergaard, An analysis of ductile rupture in notched bars. Journal of the Mechanics and Physics of Solids, Vol. 32 (6) (1984), p.461–490.
DOI: 10.1016/0022-5096(84)90031-0
Google Scholar
[11]
Y.N. Li, M. Luo, J. Gerlach, T. Wierzbicki, Prediction of shear-induced fracture in sheet metal forming, Journal of Materials Processing Technology, Vol. 210 (2010), p.1858–1869.
DOI: 10.1016/j.jmatprotec.2010.06.021
Google Scholar
[12]
Y.S. Lou, H. Huh, S. Lim, K. Pack, New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals, International Journal of Solids Structures, Vol. 49 (2012), p.3605–3615.
DOI: 10.1016/j.ijsolstr.2012.02.016
Google Scholar
[13]
Yanshan Lou, Hoon Huh, Extension of a shear-controlled ductile fracture model considering the stress triaxiality and the Lode parameter, International Journal of Solids and Structures, Vol. 50 (2013), p.447–455.
DOI: 10.1016/j.ijsolstr.2012.10.007
Google Scholar
[14]
Lode, Versuche Uber den Einfluss der mittleren Hauptspannung auf das Fliessen der Metalle Eisen, Kupfer, und Nickel. Z. Phys, Vol 36 (1926), p.913–939.
DOI: 10.1007/bf01400222
Google Scholar
[15]
F. Gagliardi, G. Ambrogio, L. Filice, On the die design in AA6082 porthole extrusion, CIRP Annals - Manufacturing Technology, Vol. 61 (1) (2012), p.231–234.
DOI: 10.1016/j.cirp.2012.03.122
Google Scholar