TiSiN Coatings for Improved Bond Strength of CoCr Alloy to Dental Ceramic

Article Preview

Abstract:

In this work, TiSiN coatings were selected to improve the adhesion between dental ceramic and CoCr substrate. The coatings were prepared by the cathodic arc technique in N2 reactive atmosphere, at different bias voltages, and analyzed for elemental composition, surface roughness, wettability and corrosion resistance in Fusayama Meyer artificial saliva. After the coating deposition, low-fusing dental ceramic film was fired on coated alloy, using a dental furnace. The bond strength of these specimens was tested using a 3-point bending test.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

275-281

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.B. Bhaduri, S. Bhaduri, Biomaterials for Dental Applications, in: R. Narayan (Ed. ), Biomedical Materials, Springer, 2009, pp.295-326.

DOI: 10.1007/978-0-387-84872-3_11

Google Scholar

[2] R. van Noort, Introduction to dental materials, third ed. Elsevier, Philadelphia, (2007).

Google Scholar

[3] M. Weinstein, S. Katz and A.B. Weinstein, U.S. Patent 3, 052, 982 (1962).

Google Scholar

[4] M. Weinstein and A.B. Weinstein, U.S. Patent 3, 052, 983 (1962).

Google Scholar

[5] T. Korkmaz, V. Asar, Comparative evaluation of bond strength of various metal–ceramic restorations, Materials and Design 30 (2009) 445–451.

DOI: 10.1016/j.matdes.2008.06.002

Google Scholar

[6] M.J. Reyes, Y. Oshida, C.J. Andres, T. Barco, S. Hovijitra, D. Brown, Titanium–porcelain system, Part III: Effects of surface modification on bond strengths, Biomed Mater Eng 11 (2001) 117–36.

Google Scholar

[7] M.W. Finnis, The theory of metal–ceramic interfaces, J. Phys.: Condens. Matter 8 (1996) 5811–5836.

DOI: 10.1088/0953-8984/8/32/003

Google Scholar

[8] M. Chakmakchi, G. Eliades, S. Zinelis, Bonding agents of low fusing cpTi porcelains: Elemental and morphological characterization, Journal of Prosthodontic Research 53 (2009) 166–171.

DOI: 10.1016/j.jpor.2009.03.003

Google Scholar

[9] G.W. Ho, J.P. Matinlinna, Insights on Ceramics as Dental Materials. Part I: Ceramic Material Types in Dentistry, Silicon 3 (2011) 109–115.

DOI: 10.1007/s12633-011-9078-7

Google Scholar

[10] A. Wang, C. Ge, H. Yin, Y. Gao, T. Jiang, C. Xia, G. Wu, Z. Wu, Evolution of silica coating layer on titanium surface and the effect on the bond strength between titanium and porcelain, Applied Surface Science 276 (2013) 723-730.

DOI: 10.1016/j.apsusc.2013.03.160

Google Scholar

[11] I. Ozacan, H. Uysal, Effects of silicon coating on bond strength of two different titanium ceramic to titanium, Dental Materials 21 (2005) 773-779.

DOI: 10.1016/j.dental.2005.01.014

Google Scholar

[12] Metal ceramic dental restorative systems, BS EN ISO 9693: (2000).

Google Scholar

[13] R.N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28 (1936) 988–994.

DOI: 10.1021/ie50320a024

Google Scholar

[14] G.D. Woolsey, L. Lorton, W.J. O'Brien, The Wetting of Ceramic Opaque Suspensions on Oxidized Alloy Surfaces: Phase II, U.S. Army Institute of Dental Research, (1984).

Google Scholar

[15] T.Y. Han, J.F. Shr, C.F. Wu, C.T. Hsieh, A modified Wenzel model for hydrophobic behavior of nanostructured surfaces, Thin Solid Films 515 (2007) 4666–4669.

DOI: 10.1016/j.tsf.2006.11.008

Google Scholar

[16] C. W. Yao, T. P. Garvin, J. L. Alvarado, A. M. Jacobi, B. G. Jones, C. P. Marsh, Droplet contact angle behavior on a hybrid surface with hydrophobic and hydrophilic properties, Appl. Phys. Lett 101 (2012) 111605.

DOI: 10.1063/1.4752470

Google Scholar

[17] G. Palasantzas, J. Th.M. de Hosson, Wetting on rough surfaces, Acta Materialia 49 (2001) 3533–3538.

DOI: 10.1016/s1359-6454(01)00238-5

Google Scholar

[18] R. Baboian, Corrosion tests and standards: application and interpretation, ASTM Series, Philadelphia, USA, (2005).

Google Scholar

[19] F. Mansfeld, The polarization resistance technique for measuring corrosion currents, in: M.G. Fontana, R.H. Staehle (Eds. ), Advances in Corrosion Engineering and Technology, Plenum Press 7, New York, 1976, pp.163-262.

DOI: 10.1007/978-1-4684-8986-6_3

Google Scholar

[20] V. Poulek, J. Musil, R. Cerny, R. Jr. Kusel, ε-Ti2N phase growth control in titanium nitride films, Thin Solid Films 170 (1989) L55-L58.

DOI: 10.1016/0040-6090(89)90738-4

Google Scholar

[21] K.S. Fancey, C.A. Porter, A. Matthews, Relative importance of bombardment energy and intensity in ion plating, J. Vac. Sci. Technol. A13 (1995) 428-435.

DOI: 10.1116/1.579375

Google Scholar

[22] E. Kelesoglu, C. Mitterer, M. Ürgen, Corrosion characteristics of plain carbon steel coated with TiN and ZrN under high-flux ion bombardment Surf. Coat. Technol. 160 (2002) 82-86.

DOI: 10.1016/s0257-8972(02)00358-4

Google Scholar

[23] H. Zhang, T.W. Guo, Z.X. Song, X.J. Wang, K.W. Xu, The effect of ZrSiN diffusion barrier on the bonding strength of titanium porcelain, Surf. Coat. Technol. 201 (2007) 5637–5640.

DOI: 10.1016/j.surfcoat.2006.07.023

Google Scholar