Influence of Thermal Treatment on the Roughness, Corrosion Resistance and Wettability of Hydroxyapatite Films Deposited by RF Magnetron Sputtering

Article Preview

Abstract:

In this paper we report on the preparation and characterization of hydroxyapatite coatings deposited on Ti6Al4V alloy by magnetron sputtering deposition method. The amorphous deposited coatings were thermal annealed in a flux of dry nitrogen and water vapours at 800 °C for 30 and 120 minutes, in order to investigate the effect of this treatment on surface roughness, corrosion resistance and wettability. The films were characterized by surface profilometry, electrochemical tests and contact angle measurements. After annealing, the hydroxyapatite coatings became crystalline, exhibiting rougher surfaces, higher corrosion resistance and lower contact angles. We have demonstrated that the hydroxyapatite coating annealed at 800°C for 30 minutes represents a good candidate to be used for medical implants, due to its superior corrosion behaviour and good wettability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

297-302

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Jarcho, Calcium phosphate ceramics as hard tissue prosthetics, Clin. Orthop. Relat. Res. 157 (1981) 259-278.

DOI: 10.1097/00003086-198106000-00037

Google Scholar

[2] A. Bandyopadhyay, S. Bernard, W. Xue, S. Bose, Calcium phosphate-based resorbable ceramics: influence of MgO, ZnO, and SiO2 dopants, J. Am. Ceram. Soc. 89 (2006) 2675-2688.

DOI: 10.1111/j.1551-2916.2006.01207.x

Google Scholar

[3] H.S. Tanvir Ahmed, Alan F. Jankowski, Strain rate sensitivity of hydroxyapatite coatings, Thin Solid Films 520 (2011) 1516-1519.

DOI: 10.1016/j.tsf.2011.06.004

Google Scholar

[4] K. De-jun, L. Dan, W. Yong-zhong, Z. Chao-zheng, Mechanical properties of hydroxyapatite-zirconia coatings prepared by magnetron sputtering, T. Nonferr. Metal. Soc. 22 (2012) 104-110.

Google Scholar

[5] C.T. Kwok, P.K. Wong, F.T. Cheng, H.C. Man, Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition, Appl. Surf. Sci. 255 (2009) 6736-6744.

DOI: 10.1016/j.apsusc.2009.02.086

Google Scholar

[6] X. Pang, I. Zhitomirsky, Electrophoretic deposition of composite hydroxyapatite-chitosan coatings, Mater. Charact. 58 (2007) 339-348.

DOI: 10.1016/j.matchar.2006.05.011

Google Scholar

[7] N.N. Che Isa, Y. Mohd, N. Yury, Electrochemical Deposition and Characterization of Hydroxyapatite (HAp) on Titanium Substrate, APCBEE Procedia 3 (2012) 46-52.

DOI: 10.1016/j.apcbee.2012.06.044

Google Scholar

[8] D. Qiu, L. Yang, Y. Yin, A. Wang, Preparation and characterization of hydroxyapatite/titania composite coating on NiTi alloy by electrochemical deposition, Surf. Coat. Technol. 205 (2011) 3280-3284.

DOI: 10.1016/j.surfcoat.2010.11.049

Google Scholar

[9] C.F. Koch, S. Johnson, D. Kumar, M. Jelinek, D.B. Chrisey, A. Doraiswamy, C. Jin, R.J. Narayan, I.N. Mihailescu, Pulsed laser deposition of hydroxyapatite thin films, Mater. Sci. Eng.: C, 27 (2007) 484-494.

DOI: 10.1016/j.msec.2006.05.025

Google Scholar

[10] G. Socol, A.M. Macovei, F. Miroiu, N. Stefan, L. Duta, G. Dorcioman, I.N. Mihailescu, S.M. Petrescu, G.E. Stan, D.A. Marcov, A. Chiriac, I. Poeata, Hydroxyapatite thin films synthesized by pulsed laser deposition and magnetron sputtering on PMMA substrates for medical applications, Mater. Sci. Eng.: B 169 (2010).

DOI: 10.1016/j.mseb.2010.01.011

Google Scholar

[11] G.E. Stan, Adherent functional graded hydroxylapatite coatings produced by sputtering deposition techniques, J. Optoelectron. Adv. Mater. 11 (2009) 1132-1138.

Google Scholar

[12] D.J. Blackwood, K.H.W. Seah, Electrochemical cathodic deposition of hydroxyapatite: Improvements in adhesion and crystallinity, Mater. Sci. Eng.: C 29 (2009) 1233-1238.

DOI: 10.1016/j.msec.2008.10.015

Google Scholar

[13] K. Ozeki, T. Yuhta, Y. Fukui, H. Aoki, Surf. Coat. Technol. 160 (2002) 54-61.

Google Scholar

[14] A.C. Parau, A.E. Kiss, V. Braic, M. Balaceanu, I. Pana, A. Vladescu, Effect of thermal treatment on the surface morphology and wettability of hydroxyapatite films deposited by rf magnetron sputtering, J. Optoelectron. Adv. Mater. 14 (2012).

DOI: 10.4028/www.scientific.net/kem.587.297

Google Scholar

[15] R.N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28 (1936) 988–994.

DOI: 10.1021/ie50320a024

Google Scholar

[16] C.W. Yao, T.P. Garvin, J.L. Alvarado, A.M. Jacobi, B.G. Jones, C.P. Marsh, Droplet contact angle behavior on a hybrid surface with hydrophobic and hydrophilic properties, Appl. Phys. Lett 101 (2012) 111605-111609.

DOI: 10.1063/1.4752470

Google Scholar

[17] G. Palasantzas, J. Th.M. de Hosson, Wetting on rough surfaces, Acta Materialia 49 (2001) 3533–3538.

DOI: 10.1016/s1359-6454(01)00238-5

Google Scholar

[18] P. Ducheyne, K. Healy, D.W. Hutmacher, D.W. Grainger and C.G. Kirkpatrick, Comprehensive Biomaterials, first edition Elsevier, USA, (2011).

Google Scholar

[19] R. Baboian (Ed. ), Corrosion Tests and Standards: Application and Interpretation, ASTM Series, Philadelphia, USA, (2005).

Google Scholar

[20] C. Wen, S. Guan, L. Peng, C. Ren, X. Wang, Z. Hu, Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications, Appl. Surf. Sci. 255 (2009) 6433-6438.

DOI: 10.1016/j.apsusc.2008.09.078

Google Scholar

[21] Q. De-liang, W. Ai-ping, Y. Yan-sheng, Characterization and corrosion behavior of hydroxyapatite/zirconia composite coating on NiTi fabricated by electrochemical deposition, J Appl. Surf. Sci. 257 (2010) 1774-1778.

DOI: 10.1016/j.apsusc.2010.09.014

Google Scholar