[1]
D. Passigli, R. Sarkar, P. Paul, S. Saha, Ethics of end of life care: the need for improved communication among physicians, patients, and families. Ethics in Biology, Engineering and Medicine-An International Journal, 2(1): 45-69 (2011).
DOI: 10.1615/ethicsbiologyengmed.2011003417
Google Scholar
[2]
L.L. Hench, Bioceramics, Journal of the American Ceramic Society, 81(7): 1705-28 (1998).
Google Scholar
[3]
L.L. Hench, J. Wilson and D.C. Greenspan, Bioglass: A Short History and Bibliography, Journal of the Australian Ceramic Society, 40: 1–42 (2004).
Google Scholar
[4]
D. Callahan, What Kind of Life: The Limits of Medical Progress, Simon and Schuster, New York, NY, (1990).
Google Scholar
[5]
L.L. Hench, J.R. Jones, and M.B. Fenn, New Materials and Technologies for Healthcare: Imperial College Press, London, (2012).
Google Scholar
[6]
L.L. Hench, and J.M. Polak, Third-Generation Biomedical Materials, Science, 295, 1014-1017 (2002).
DOI: 10.1126/science.1067404
Google Scholar
[7]
L.L. Hench and J. Wilson, Eds. Clinical Performance of Skeletal Prostheses, Chapman and Hall, Ltd, London, (1996).
Google Scholar
[8]
L.L. Hench, Science, Faith and Ethics, London, UK: Imperial College Press, (2001).
Google Scholar
[9]
T.L. Beauchamp and L. Walters, eds. Contemporary Issues in Bioethics (3rd edition), California: Wadsworth Publishing Co. (1989).
Google Scholar
[10]
B. Hilton, First Do No Harm: Wrestling with the New Medicine's Life and Death Dilemmas Abingdon Press, Nashville, TN, (1991).
Google Scholar
[11]
P. S. Saha and S. Saha, Journal of Long-Term Effects of Medical Implants, 1.
Google Scholar
[2]
127-134(1991).
Google Scholar
[12]
T.A. Raffin, J.N. Shurkin, and W. Sinkler III, Intensive Care: Facing the Critical Choices, New York: W.H. Freeman and Co. (1989).
DOI: 10.7748/ns.3.22.43.s60
Google Scholar
[13]
M.M. Uhlmann, Last Rights? Assisted Suicide and Euthanasia Debated, Michigan: W.B. Eardmanns Pub. Co. (1998).
Google Scholar
[14]
G.A. Larue, and R. Bayly, Long Term Care In An Aging Society, Amherst, NY: Prometheus Books, (1992).
Google Scholar
[15]
T. Kirkwood, Time of Our Lives, London, UK: Weidenfield and Nicolson, (1999).
Google Scholar
[16]
A. Gawande, Letting Go, The New Yorker, August 2, 36-49 (2010).
Google Scholar
[17]
Anon. Approaching Death: Improving Care at the End of Life, The Institute of Medicine, National Academy of Sciences Press, Washington, D.C. (1997).
Google Scholar
[18]
E.S. Place, N.D. Evans, and M.M. Stevens, Complexity in Biomaterials and Other Challenges in the Translation of Tissue Engineering, Nature Materials, 8, 457-470 (2009).
Google Scholar
[19]
I.D. Xynos, M.V.J. Hukkanen, J.J. Batten, I.D. Buttery, L.L. Hench, and J.M. Polak Ionic Dissolution Products of Bioactive Glass Increase Proliferation of Human Osteoblasts and Induced Insulin-like Growth Factor II mRNA Expression and Protein Synthesis, Biochem. Biophys. Res. Comm. 276: (2000).
DOI: 10.1006/bbrc.2000.3503
Google Scholar
[20]
I.D. Xynos, A.J. Edgar, L.D.K. Buttery, L.L. Hench, and J.M. Polak, Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution, Journal of Biomedical Materials Research, 55(2), 151-157 (2001).
DOI: 10.1002/1097-4636(200105)55:2<151::aid-jbm1001>3.0.co;2-d
Google Scholar
[21]
J.R. Jones, P.D. Lee, L.L. Hench, Hierarchical Porous Materials for Tissue Engineering, Philosophical Transactions of the Royal Society, 364, 263-281 (2006).
DOI: 10.1098/rsta.2005.1689
Google Scholar
[22]
.J.R. Jones, Review of bioactive glass: From Hench to hybrids, Acta Biomateriala http: /dx. doi. org/10. 1016/j. acbio. 2012. 08. 023, (2012).
Google Scholar
[23]
B.E. Ilharreborde, Morel, F. Fitoussi, A. Presedo, P. Souchet, G. Pennecot, and K. Mazda, Bioactive Glass as a Bone Substitute for Spinal Fusion in Adolescent Idiopathic Scoliosis: A Comparative Study with Iliac Crest Autograft. J. Pediatr, Ortho, 28, 347-351 (2008).
DOI: 10.1097/bpo.0b013e318168d1d4
Google Scholar
[24]
L.L. Hench (Ed), Introduction to Bioceramics, 2nd Edition, Imperial College Press, London, U.K., (2013).
Google Scholar
[25]
A. Leu, and J.K. Leach, Proangiogenic Potential of a Collagen/Bioactive Glass Substrate, Pharmaceutical Research, 25, 1222-1229 (2008).
DOI: 10.1007/s11095-007-9508-9
Google Scholar
[26]
A.A. Gorustovich, J. A. Roether, and A.R. Boccaccini, Effect of Bioactive Glasses on Angiogenesis: A Review of In Vitro and In Vivo Evidences, Tissue Engineering Part B, 16(2), 199-207 (2009).
DOI: 10.1089/ten.teb.2009.0416
Google Scholar
[27]
I. Notingher, S. Verrier, H. Romanska, A.E. Bishop, J.M. Polak, and L.L. Hench, In situ Characterisation of Living Cells by Raman Spectroscopy, Spectroscopy, 16, 43-51 (2002).
DOI: 10.1155/2002/408381
Google Scholar
[28]
.I. Notingher, I. Bisson, A.E. Bishop, W.L. Randle, J.M. Polak, and L.L. Hench, In-situ Spectral Monitoring of mRNA Translation in Embryonic Stem Cells During Differentiation In-Vitro Analytical Chemistry, 76, 3185-3193 (2004).
DOI: 10.1021/ac0498720
Google Scholar
[29]
I. Notingher, G. Jell, U. Lohbauer, V. Salih, and L.L. Hench, In-situ non-invasive Spectral Discrimination between Bone Cell Phenotypes used in Tissue Engineering Journal of Cellular Biochemistry, 92, 1180-1192 (2004).
DOI: 10.1002/jcb.20136
Google Scholar
[30]
I. Notingher, J. Selvakumaran, and L.L. Hench, New Detection System for Toxic Agents Based on Continuous Spectroscopic Monitoring of Living Cells Biosensors & Bioelectronics, 20, 780-789 (2004).
DOI: 10.1016/j.bios.2004.04.008
Google Scholar
[31]
I. Notingher, I. Bisson, J.M. Polak, and L.L. Hench, In Situ Spectroscopic Study of Nucleic Acids in Differentiating Embryonic Stem Cells, Vibrational Spectroscopy, 35, 199-203 (2004).
DOI: 10.1016/j.vibspec.2004.01.014
Google Scholar
[32]
I. Notingher, G. Jell, P.L. I. Notingher Bisson, O. Tsigkou, J.M. Polak, M.M. Stevens, and L.L. Hench, Multivariate Analysis of Raman Spectra for in Vitro Non-Invasive Studies of Living Cells, Journal of Molecular Structure, 744, 179-85 (2005).
DOI: 10.1016/j.molstruc.2004.12.046
Google Scholar
[33]
I. Notingher and L.L. Hench, Raman Microspectroscopy: A Non-Invasive Tool for Studies of Individual Living Cells in Vitro, Expert Review of Medical Devices, 3(2), 215-234 (2006).
DOI: 10.1586/17434440.3.2.215
Google Scholar
[34]
I. Notingher, C. Green, C. Dyer, and L.L. Hench, Discrimination Between Ricin and Sulfur Mustard Toxicity In Vitro Using Raman Spectroscopy, J. R. Soc. Interface, 1(1), 79-90 (2004).
DOI: 10.1098/rsif.2004.0008
Google Scholar
[35]
C. A. Owen, G. Jell, I. Notingher, and M.M. Stevens, In Vitro Toxicology Evaluation of Pharmaceuticals Using Raman Microspectroscopy, J. Cellular Biochemistry, 99(1), 178-186 (2006).
DOI: 10.1002/jcb.20884
Google Scholar
[36]
G. Jell, I. Notingher, O. Tsigkou, P. Notingher, J.M. Polak, L.L. Hench, M.M. Stevens, Bioactive Glass-Induced Osteoblast Differentiation: A Noninvasive Spectroscopic Study, Journal of Biomedical Materials Research Part A, 86A(1), 31-40 (2008).
DOI: 10.1002/jbm.a.31542
Google Scholar
[37]
C.A. Owen, J. Selvakumaran, I. Notingher, G. Jell, L.L. Hench, and M.M. Stevens, In Vitro Toxicology Evaluation of Pharmaceuticals Using Raman Micro-Spectroscopy, Journal of Cellular, Biochemistry, 99, 178-185 (2006).
DOI: 10.1002/jcb.20884
Google Scholar
[38]
E. Gentleman, R.J. Swain, N.D. Evans, S. Boonrungsiman, G. Jell, M. D. Ball, T.A.V. Sheen, M. Oven, A. Porter, and M.M. Stevens, Comparative Materials Differences Revealed in Engineered Bone as a Function of Cell-Specific Differentiation, Nature Materials. 8, 763-8 (2009).
DOI: 10.1038/nmat2505
Google Scholar
[39]
J.W. Chan, D.S. Taylor, T.D. Zwerdling, S.M. Lane, K. Ihara, and T. Huser, Micro-Raman Spectroscopy Detects Individual Neoplastic and Normal Hematopoietic Cells, Biophysical Journal, 90, 648-656 (2006).
DOI: 10.1529/biophysj.105.066761
Google Scholar
[40]
G. Pyrgiotakis, T.K. Bhowmick, and K. Finton, et al., Cell (A549)-Particle (Jasada Bhasma) Interactions Using Raman Spectroscopy, Biopolymers 89(6), 555-564 (2008).
DOI: 10.1002/bip.20947
Google Scholar
[41]
S. Wachsmann-Hogiu, T. Weeks, and T. Huser, Chemical analysis in vivo and in vitro by Raman spectroscopy- from single cells to humans, Current Opinion in Biotechnology, 20, 63-73 (2009).
DOI: 10.1016/j.copbio.2009.02.006
Google Scholar
[42]
C.H. Arnaud, Raman heads for the clinic, Chemical and Engineering News, 88(38), 8-12 (2010).
Google Scholar
[43]
M.B. Fenn, P. Xanthopoulos, G. Pyrgiotakis, S.R. Grobmyer, P.M. Pardalos, and L.L. Hench, Raman Spectroscopy for Clinical Oncology, Advances in Optical Technologies, Vol. 2011; 1-20. doi: 10. 1155/2011/213783, (2011).
DOI: 10.1155/2011/213783
Google Scholar
[44]
M.B. Fenn, V. Pappu, P. Georgeiv, and P.M. Pardalos, Raman spectroscopy utilizing Fisher-based feature selection combined with support vector machines for the characterization of breast cancer cell lines, Journal of Raman Spectroscopy (2013).
DOI: 10.1002/jrs.4309
Google Scholar