Energy Diagnosis of the Structure of the Demolition Hammer with WoSSo Vibroisolation of a Biomechanical System

Article Preview

Abstract:

The article presents the results of energy diagnosis of the structure of an innovative, mechanized, hand-held demolition tool with application of the Constant Interaction Force Vibroisolation (abbreviated as WoSSO) of a biomechanical system. Sample results refer to the demolition hammer of the weight of 15,6 kg and the frequency of working shocks of 20 Hz. The diagnostic research was to recognise and evaluate the energy and spatial impact of the innovative structure of the hammer provided with anti-vibration system upon human. 3D energy physical and mathematical models of the entire system human demolition hammer with vibroisolation of 18 degrees of freedom were designed and the problem was solved with the digital simulation method. The forces enforcing three directions of vibrations were identified via experiments at the research stand on the model base compliant with the ISO standard and then entered in the simulation program. The obtained results of the energy diagnosis of the structure explained the phenomenon of the energy flow in the examined biomechanical system and confirmed the efficiency of the flow reduction of the energy of vibrations into the human body at all the reduction points in the three directions of vibrations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-126

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Marek, Choroby zawodowe [Occupational diseases], Wydawnictwo Lekarskie PZWL, Warszawa (2003)

Google Scholar

[2] C. Cempel, Wibroakustyczna diagnostyka maszyn [Vibroacoustic diagnosis of machines], PWN, Warszawa (1989)

Google Scholar

[3] C. Cempel, Theory of energy transforming systems and their application in diagnostics of operating systems. App. Math. And. Comp. Sci., Vol. 3, 1993, 533-548

Google Scholar

[4] M. W. Dobry, Optymalizacja przepływu energii w systemie Człowiek - Narzędzie - Podłoże (CNP), [Optimization of the energy flow in the system: Human – Tool – Base] Rozprawa habilitacyjna, Seria "Rozprawy" [Habilitation dissertation, Series 'Dissertations'] nr 330. ISSN 0551-6528, Wyd. Politechniki Poznańskiej, [Poznan University of Technology Publishing House], Poznań (1998)

Google Scholar

[5] M. W. Dobry, Metoda energetycznego dostosowania maszyn do człowieka-operatora i środowiska na etapie projektowania, [Method of energy adaptation of machines to human-operator and the environment at the designing stage], Archiwum Technologii Maszyn i Automatyzacji [Archives of the Machine Technology and Automated Machinery], Vol. 2, Nr 2 spec., Wydawnictwo Politechniki Poznańskiej [Poznan University of Technology Publishing House], Poznań 2004, s. 29-39

Google Scholar

[6] M. W. Dobry, M. Wojsznis, Innowacyjna metoda redukcji przepływu energii do człowieka-operatora od dużych zmechanizowanych narzędzi ręcznych, Raport końcowy, Projekt badawczy N503 017 32/2558, [Innovative method of reduction of the energy flow to human-operator from large, mechanized, hand-held tools, Final report, Research project] Politechnika Poznańska, Instytut Mechaniki Stosowanej [Poznan University of Technology, Institute of Applied Mechanics], Poznań 2011 r.

Google Scholar

[7] Z. Engel, Ochrona środowiska przed drganiami i hałasem [Protection of environment against vibrations and noise], PWN, Warszawa (1993)

Google Scholar

[8] Z. Engel, W. M. Zawieska, Hałas i drgania w procesach pracy – źródła, ocena, zagrożenia. [Noise and vibrations in work processes – sources, evaluation, hazards] Wyd. CIOP, Warszawa (2010)

Google Scholar

[9] M. J. Griffin M. J.; Handbook of human vibration, London: Academic Press, (1990)

Google Scholar

[10] W. Taylor W., P. L. Pelmear, Vibration White Finger in Industry, Academic Press, London – New York – San Francisco (1975)

Google Scholar

[11] D. E. Wasserman, Human Aspects of Occupational Vibration, Elsevier Amsterdam – Oxford – New York – Tokyo (1987)

Google Scholar

[12] M. Wojsznis, M. W. Dobry, 3D Vibrations in a Human being – Tool Structure, Proceedings of the 10th International Conference, University of Southampton, Southampton 2010, U.K.

Google Scholar

[13] ISO/FDIS 10068 (1998). Mechanical vibrations and shock – Free, mechanical impedance of human hand- arm system at the driving point.

Google Scholar