[1]
D. Huston, Structural sensing, health monitoring and performance evaluation, Boca Raton, Taylor & Francis Group (2011)
Google Scholar
[2]
T. Uhl, Contemporary monitoring methods and constructiondiagnosting, In: Polskie i światowe osiągnięcia nauki : nauki techniczne, Gliwice : Fundacja im. Wojciecha Świetosławskiego (2010) 193–254
Google Scholar
[3]
J.E. Michaels, T.E. Michaels, Detection of structural damage from the local temporal coherence of diffuse ultrasonic signals, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 52 (10) (2005) 1769-1782
DOI: 10.1109/tuffc.2005.1561631
Google Scholar
[4]
E. Blaise, F.-K. Chang, Built-in diagnostics for debonding in sandwich structures under extreme temperatures, In: Proceedings of the Third International Workshop on Structural Health Monitoring, Stanford University, CA(2001) 154-163
Google Scholar
[5]
B.C. Lee, G. Manson, W.J. Staszewski, Environmental effects on Lamb wave responses from piezoceramic sensors, Materials Science Forum, 440-441 (2003) 195-202
DOI: 10.4028/www.scientific.net/msf.440-441.195
Google Scholar
[6]
M.J. Shulz, M.J. Sundaresan, J. Mcmichael, D. Clayton , R. Sadler, B. Nagel, Piezoelectric materials at elevated temperature, Journal of Intelligent Material Systems and Structures, 144(11) (2003) 693-705
DOI: 10.1177/1045389x03038577
Google Scholar
[7]
J.T. Chambers, B.L. Wardle, S.S. Kessler, Durability assessment of Lamb wave-based structural health monitoring nodes, In: Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, PI, Paper No. AIAA-2006-2263 (2006)
DOI: 10.2514/6.2006-2263
Google Scholar
[8]
F. Lanza di Scalea, S. Salamone, Temperature effects in ultrasonic Lamb wave structural health monitoring systems, Acoustical Society of America, 124(1) (2008) 161-174
DOI: 10.1121/1.2932071
Google Scholar
[9]
G. Konstantinidis, B.W. Drinkwater, P.D. Wilcox, The temperature stability of guided wave structural health monitoring systems, Journal of Smart Materials and Structures, 15(4) (2006) 967-976
DOI: 10.1088/0964-1726/15/4/010
Google Scholar
[10]
P. Kijanka, R. Radecki, P. Paćko, W.J. Staszewski, T. Uhl, Local interaction simulation approach for simplified temperature effect modelling in Lamb wave propagation for damage detection, submitted to Journal of Smart Materials and Structures (2012)
DOI: 10.1088/0964-1726/22/3/035014
Google Scholar
[11]
N. Gandhi, J.E. Michaels, Efficient perturbation analysis of Lamb wave dispersion curves, Review of Quantitative Nondestructive Evaluation, 29 (2010) 215-222
Google Scholar
[12]
N. Thrane, The Hilbert transform, Technical Review, Brüel&Kjaer, 3 (1984) 3-15
Google Scholar
[13]
D. Gabor, Theory of communication, Proceedings of the IEEE, 93 (1946) 429-457
Google Scholar
[14]
M.F. Ghazali, W.J. Staszewski, J.D. Shucksmith, J.B. Boxall, S.B.M. Beck, Instantaneous phase and frequency for detection of leaks and features in a pipeline system, Structural Health Monitoring, 10(4) (2011) 351-360
DOI: 10.1177/1475921710373958
Google Scholar
[15]
T. Zieliński, Digital signal processing: from theory to applications, Wyd. Komunikacji i Łączności, Warszawa (2009)
Google Scholar
[16]
R. Radecki, The effect of temperature on Lamb wave features, MSc thesis, the Department of Robotics and Mechatronics, AGH University of Science and Technology, Poland
Google Scholar