Machine Learning Applications for a Wind Turbine Blade under Continuous Fatigue Loading

Article Preview

Abstract:

Structural health monitoring (SHM) systems will be one of the leading factors in the successful establishment of wind turbines in the energy arena. Detection of damage at an early stage is a vital issue as blade failure would be a catastrophic result for the entire wind turbine. In this study the SHM analysis will be based on experimental measurements of vibration analysis, extracted of a 9m CX-100 blade under fatigue loading. For analysis, machine learning techniques utilised for failure detection of wind turbine blades will be applied, like non-linear Neural Networks, including Auto-Associative Neural Network (AANN) and Radial Basis Function (RBF) networks models.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-174

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. D. Agarwal, L. J. Broutman and K. Chandrashekhara, Analysis and performance of fibre composites, Wiley, 2006.

Google Scholar

[2] Deraemaeker, K. Worden, New trends in vibration based structural health monitoring, CISM Courses and Lectures, Vol.520, Springer-Verlag, 2010.

Google Scholar

[3] K. Worden, G. Manson, N. R. Fieller, Damage detection using outlier analysis, Journal of Sound and Vibration, 229, 647–667, 1999.

DOI: 10.1006/jsvi.1999.2514

Google Scholar

[4] C. M. Bishop, Neural networks for pattern recognition, Oxford University Press, 1995.

Google Scholar

[5] C. M. Bishop, Pattern recognition and machine learning, Springer Press, 2006.

Google Scholar

[6] M. A. Kramer, Nonlinear principal component analysis using auto-associative neural networks. AIChE Journal, 37(2):233–243, 1991.

DOI: 10.1002/aic.690370209

Google Scholar

[7] K. Worden, Structural fault detection using a novelty measure, Journal of Sound and Vibration, 201(1), pp.85-101, 1997.

DOI: 10.1006/jsvi.1996.0747

Google Scholar

[8] L. Tarassenko, A. Nairac, N. Townsend, I. Buxton, Z. Cowley, Novelty detection for the identification of abnormalities, International Journal of Systems Science, 31(11), pp.1427-1439, 2000.

DOI: 10.1080/00207720050197802

Google Scholar

[9] H. Sohn, K. Worden, C.F. Farrar, Novelty detection under changing environmental conditions, SPIE's Eighth Annual International Symposium on Smart Structures and Materials, Newport Beach, CA. (LA-UR-01-1894), 2001.

DOI: 10.1117/12.434110

Google Scholar

[10] N. Dervilis, R. Barthorpe, I. Antoniadou, W. J. Staszewski, K. Worden, Damage detection in carbon composite material typical of wind turbine blades using Auto-Associative Neural Networks, SPIE's Annual International Symposium on Smart Structures and Materials, 8348, 2012.

DOI: 10.1117/12.914710

Google Scholar

[11] M. Scholz and R. Vig´ario. Nonlinear PCA: a new hierarchical approach. In M. Verleysen, editor, Proceedings ESANN, pages 439–444, 2002.

Google Scholar

[12] Bourlard, H., & Kamp, Y., Auto-association by multilayer perceptrons and singular value decomposition. Biological Cybernetics, 59, 291–294, 1988.

DOI: 10.1007/bf00332918

Google Scholar

[13] Cottrell, G. W., & Munro, P., Principal component analysis of images via back propagation. In Proceedings of the Society of Photo-Optical Instrumentation Engineers. Cambridge, MA, 1988.

Google Scholar

[14] N. Japkowicz, S.J. Hanson, M.A. Gluck, Nonlinear autoassociation is not equivalent to PCA, Neural Computation 12, 531-545, Massachusetts Institute of Technology, 2000.

DOI: 10.1162/089976600300015691

Google Scholar

[15] G. Manson, K. Worden, D. J. Allman. Experimental validation of a structural health monitoring methodology: Part III. Novelty detection on an aircraft wing, Journal of Sound and Vibration, 259 , 345–363, 2003.

DOI: 10.1006/jsvi.2002.5167

Google Scholar

[16] P. Filzmoser, A multivariate outlier detection method, Proceedings of the 7th International Conference on Computer Data Analysis and Modeling, Minsk, Belarus,18-22, 2004.

Google Scholar

[17] N. M. M. Maia, J. M. M Silva, Theoretical and experimental modal analysis, Research Studies Press, 1998.

Google Scholar

[18] G. Manson, K.Worden, D. J. Allman, Experimental validation of a structural health monitoring methodology: Part II. Novelty detection on an aircraft wing, Journal of Sound and Vibration. 259, 345–363, 2003.

DOI: 10.1006/jsvi.2002.5167

Google Scholar

[19] K. Worden, G. Manson, D. J. Allman, Experimental validation of a structural health monitoring methodology: Part I. Novelty detection on a laboratory structure, Journal of Sound and Vibration, 259, 323–343, 2003.

DOI: 10.1006/jsvi.2002.5168

Google Scholar

[20] Stuart G. Taylor et al., Full-scale fatigue tests of CX-100 wind turbine blades. Part II: analysis, SPIE's Annual International Symposium on Smart Structures and Materials, 8348, 2012.

DOI: 10.1117/12.917493

Google Scholar

[21] Kevin M. Farinholt et al., Full-scale fatigue tests of CX-100 wind turbine blades. Part I: testing, SPIE's Annual International Symposium on Smart Structures and Materials, 8343, 2012.

DOI: 10.1117/12.917493

Google Scholar

[22] N Dervilis et al., Novelty detection applied to vibration data from a CX-100 wind turbine blade under fatigue loading, J. Phys.: Conf. Ser. 382 012047, 2012.

DOI: 10.1088/1742-6596/382/1/012047

Google Scholar

[23] Ian T. Nabkey, Netlab algorithms for pattern recognition, Springer, 2004.

Google Scholar