[1]
B. C. H. Steele, Oxygen transport and exchange in oxide ceramics, J. Power Sources, 49(1994), 1-14.
Google Scholar
[2]
H. U. Anderson, Review of p-type doped perovskite materials for SOFC and other applications , Solid State Ionics, 52(1992), 33-41.
DOI: 10.1016/0167-2738(92)90089-8
Google Scholar
[3]
C. -J. Li, C. -X. Li, Y. -Z. Xing, et al., Effect of YSZ electrolyte thickness on the characteristics of plasma-sprayed cermet supported tubular SOFC, Solid State Ionics, 177 (2006) 2065-(2069).
DOI: 10.1016/j.ssi.2006.03.004
Google Scholar
[4]
T. Okuo, Y. Kaga and A. Momma, New tubular type SOFC using metallic system components, Denki Kagaku, Vol. 64 (6) (1996), 555-561.
DOI: 10.5796/kogyobutsurikagaku.64.555
Google Scholar
[5]
S. Takenori, N. Kadokawa and K. Koseki, Development of metallic substrate supported planar solid oxide fuel cells fabricated by atmospheric plasma spraying, J. Therm. Spray Technol., 9(3), (2000), 360-363.
DOI: 10.1361/105996300770349809
Google Scholar
[6]
R. Zheng, X. -M. Zhou, S. -R. Wang, et al., A study of Ni+8YSZ/8YSZ/La0. 6Sr0. 4CoO3 ITSOFC fabricated by atmospheric plasma spraying, J. Power Sources, 140, (2005), 217-225.
DOI: 10.1016/j.jpowsour.2004.06.015
Google Scholar
[7]
C. -J. Li, C. -X. Li, X. -J. Ning. Performance of YSZ electrolyte layer deposited by atmospheric plasma spraying for cermet supported tubular SOFC. Vacuum, 73, 2004, 699-703.
DOI: 10.1016/j.vacuum.2003.12.096
Google Scholar
[8]
K. Okumura, Y. Aihara, S. Ito, S. Kawasaki, Development of thermal spraying-sintering technology for solid oxide fuel cells, J. Therm. Spray Technol., 9, 2000, 35-359.
DOI: 10.1361/105996300770349791
Google Scholar
[9]
T-L Wen, D. Wang, H-Y Tu, M. Chen, Z. Lu, Z. Zhang, H. Nie, W. Huang, Research on planar SOFC stack, Solid State Ionics, 152-153, (2002), 399-404.
DOI: 10.1016/s0167-2738(02)00348-x
Google Scholar
[10]
K. Lehmus, M. Karppinen, M. Matvejeff, et al. Oxygen stoichimetry in the (Ba0. 5La0. 5)(Fe1-xCux)O3-w (x=0-1) pervoskite system, Int. J. Inorg. Mater., 3 (2000) 803-808.
Google Scholar
[11]
G. Ch. Kostogloudis and Ch. Ftikos. Oxygen nonstoichimetry in the Pr1-xSrxCo0. 2B0. 8O3-δ(B=Mn, Fe, x=0. 2, 0. 4) pervoskite oxides, J. Eur. Ceram. Soc., 27 (2007) 273-277.
DOI: 10.1016/j.jeurceramsoc.2006.02.044
Google Scholar
[12]
J. L. Garcia-Munoz, C. Frontera, A. Llobet, et al., Study of the oxygen-deficient double pervoskite PrBaCo2O5. 75, Physica B., 350 (2004) e277-e279.
DOI: 10.1016/j.physb.2004.03.069
Google Scholar
[13]
K. Conder, E. Pomjakushina, A. Soldatov, et al., Oxygen conten determination in perovskite-type cobaltates, Mater. Res. Bull. 40 (2005) 257-263.
DOI: 10.1016/j.materresbull.2004.10.009
Google Scholar
[14]
M. V. Lomakov, S. Ya. Istomin, A. M. Abakumov, et al., Synthesis and characterization of oxygen- deficient oxides BaCo1-xYxO3-y x=0. 15, 0. 25 and 0. 33, with the perovskite structure, Solid State Ionics, 179 (2008) 1885-1889.
DOI: 10.1016/j.ssi.2008.05.004
Google Scholar
[15]
R. P. Haggerty and R. Seshadri, Oxygen stoichimetry, crystal structure, and magnetism of La0. 5 Sr0. 5 CoO3-δ., J. Phy: Condens. Matter. 16 (2004) 6477-6484.
DOI: 10.1088/0953-8984/16/36/013
Google Scholar
[16]
M. Gao, C. -J. Li, C. -X. Li, et al., Microstructure, oxygen stoichiometry and electrical conductivity of flame sprayed Sm0. 7Sr0. 3CoO3-δ, J. Power Sources. 2009, 191(2): 275-279.
DOI: 10.1016/j.jpowsour.2009.02.016
Google Scholar