Determination of Oxygen Content in Pervoskite-Type Cathode Coatings

Article Preview

Abstract:

In this paper, La0.75Sr0.25MnO3(LSM) and La0.6Sr0.4CoO3–δ (LSCO)coatings were prepared by the atmospheric plasma spraying method andflame spraying method. Both coatings were annealedat 800 °C, 900 °C, 1000 °C for 5 h, 10h, 15 h and 20 h. Oxygen content of LSM and LSCO coatings weredetermined by redox titration. It is interesting to noted that, oxygen content of LSM and LSCO coatings strongly varied with the annealing temperature andannealing time. The experimental results show that, at same annealingtemperature, oxygen vacancy decreases with the increase of annealing time. For LSM coatings, at 800 °C,the oxygen vacancy, δ, were decreased from 0.419 to 0.353, 0.310 and to 0.258 with theannealing time increased from 5 hto 10 h, 15 h and to 20 h. Under the same annealing time, oxygen vacancydecreased with increase of annealingtemperature. For LSCO coatings, the oxygen vacancy, δ, were decreased from0.698 to 0.573 and to 0.535 after annealed at 800 °C, 900°C and 1000 °C for 5 h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

November 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. C. H. Steele, Oxygen transport and exchange in oxide ceramics, J. Power Sources, 49(1994), 1-14.

Google Scholar

[2] H. U. Anderson, Review of p-type doped perovskite materials for SOFC and other applications , Solid State Ionics, 52(1992), 33-41.

DOI: 10.1016/0167-2738(92)90089-8

Google Scholar

[3] C. -J. Li, C. -X. Li, Y. -Z. Xing, et al., Effect of YSZ electrolyte thickness on the characteristics of plasma-sprayed cermet supported tubular SOFC, Solid State Ionics, 177 (2006) 2065-(2069).

DOI: 10.1016/j.ssi.2006.03.004

Google Scholar

[4] T. Okuo, Y. Kaga and A. Momma, New tubular type SOFC using metallic system components, Denki Kagaku, Vol. 64 (6) (1996), 555-561.

DOI: 10.5796/kogyobutsurikagaku.64.555

Google Scholar

[5] S. Takenori, N. Kadokawa and K. Koseki, Development of metallic substrate supported planar solid oxide fuel cells fabricated by atmospheric plasma spraying, J. Therm. Spray Technol., 9(3), (2000), 360-363.

DOI: 10.1361/105996300770349809

Google Scholar

[6] R. Zheng, X. -M. Zhou, S. -R. Wang, et al., A study of Ni+8YSZ/8YSZ/La0. 6Sr0. 4CoO3 ITSOFC fabricated by atmospheric plasma spraying, J. Power Sources, 140, (2005), 217-225.

DOI: 10.1016/j.jpowsour.2004.06.015

Google Scholar

[7] C. -J. Li, C. -X. Li, X. -J. Ning. Performance of YSZ electrolyte layer deposited by atmospheric plasma spraying for cermet supported tubular SOFC. Vacuum, 73, 2004, 699-703.

DOI: 10.1016/j.vacuum.2003.12.096

Google Scholar

[8] K. Okumura, Y. Aihara, S. Ito, S. Kawasaki, Development of thermal spraying-sintering technology for solid oxide fuel cells, J. Therm. Spray Technol., 9, 2000, 35-359.

DOI: 10.1361/105996300770349791

Google Scholar

[9] T-L Wen, D. Wang, H-Y Tu, M. Chen, Z. Lu, Z. Zhang, H. Nie, W. Huang, Research on planar SOFC stack, Solid State Ionics, 152-153, (2002), 399-404.

DOI: 10.1016/s0167-2738(02)00348-x

Google Scholar

[10] K. Lehmus, M. Karppinen, M. Matvejeff, et al. Oxygen stoichimetry in the (Ba0. 5La0. 5)(Fe1-xCux)O3-w (x=0-1) pervoskite system, Int. J. Inorg. Mater., 3 (2000) 803-808.

Google Scholar

[11] G. Ch. Kostogloudis and Ch. Ftikos. Oxygen nonstoichimetry in the Pr1-xSrxCo0. 2B0. 8O3-δ(B=Mn, Fe, x=0. 2, 0. 4) pervoskite oxides, J. Eur. Ceram. Soc., 27 (2007) 273-277.

DOI: 10.1016/j.jeurceramsoc.2006.02.044

Google Scholar

[12] J. L. Garcia-Munoz, C. Frontera, A. Llobet, et al., Study of the oxygen-deficient double pervoskite PrBaCo2O5. 75, Physica B., 350 (2004) e277-e279.

DOI: 10.1016/j.physb.2004.03.069

Google Scholar

[13] K. Conder, E. Pomjakushina, A. Soldatov, et al., Oxygen conten determination in perovskite-type cobaltates, Mater. Res. Bull. 40 (2005) 257-263.

DOI: 10.1016/j.materresbull.2004.10.009

Google Scholar

[14] M. V. Lomakov, S. Ya. Istomin, A. M. Abakumov, et al., Synthesis and characterization of oxygen- deficient oxides BaCo1-xYxO3-y x=0. 15, 0. 25 and 0. 33, with the perovskite structure, Solid State Ionics, 179 (2008) 1885-1889.

DOI: 10.1016/j.ssi.2008.05.004

Google Scholar

[15] R. P. Haggerty and R. Seshadri, Oxygen stoichimetry, crystal structure, and magnetism of La0. 5 Sr0. 5 CoO3-δ., J. Phy: Condens. Matter. 16 (2004) 6477-6484.

DOI: 10.1088/0953-8984/16/36/013

Google Scholar

[16] M. Gao, C. -J. Li, C. -X. Li, et al., Microstructure, oxygen stoichiometry and electrical conductivity of flame sprayed Sm0. 7Sr0. 3CoO3-δ, J. Power Sources. 2009, 191(2): 275-279.

DOI: 10.1016/j.jpowsour.2009.02.016

Google Scholar