Effect of WO3 Doping on Microstructural and Electrical Properties of ZnO-Pr6O11 Based Varistor Materials

Article Preview

Abstract:

The effect of WO3 doping on microstructural and electrical properties of ZnO-Pr6O11 based varistor materials was investigated. The doped WO3 plays a role of inhibitor in ZnO grain growth, resulting in decreased average grain size from 2.68 to 1.68 μm with increasing doping level of WO3 from 0 to 0.5 mol%. When the doping level of WO3 was lower than 0.05 mol%, the nonlinear current-voltage characteristics of the obtained varistors could be improved significantly with increasing amount of WO3 doped. But when the doping level of WO3 became higher, their nonlinear current-voltage performance would be dramatically deteriorated when more WO3 was doped. The optimum nonlinear coefficient, varistor voltage, and leakage current of the samples were about 13.71, 710 V/mm and 13 μA/cm2, respectively, when the doping level of WO3 was in the range from 0.03 to 0.05 mol%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-60

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.K. Gupta, Application of zinc oxide varistors, J. Am. Ceram. Soc. 73 (1990) 1817-1840.

Google Scholar

[2] S. Shichimiya, M. Yamaguchi, N. Furuse, M. Kobayashi, S. Ishibe, Development of advanced arresters for GIS with new zinc-oxide elements, IEEE T. Power Delivery 13 (1998) 465–471.

DOI: 10.1109/61.660916

Google Scholar

[3] T. Imai, T. Udagawa, H. Andoh, Development of high gradient zinc oxide nonlinear resistors and their applications to surge arresters, IEEE T. Power Delivery 13 (1998) 1182–1187.

DOI: 10.1109/61.714482

Google Scholar

[4] K. Mukae, Zinc-oxide varistors with praseodymium oxide, Am. Ceram. Soc. Bull. Vol. 66 (1987) 1329-1331.

Google Scholar

[5] S. Fujitsu, H. Toyoda, H. Yanagida, Origin of ZnO varistor, J. Am. Ceram. Soc. 70 (1987) C71-C72.

Google Scholar

[6] H.H. Hng, K.Y. Tse, Grain growth of ZnO in binary ZnO-V2O5 ceramics, J. Mater. Sci. 38 (2003) 2367-2372.

Google Scholar

[7] J.P. Han, A.M.R. Senos, P.Q. Mantas, Varistor behaviour of Mn-doped ZnO ceramics, J. Eur. Ceram. Soc. 22 (2002) 1653-1660.

DOI: 10.1016/s0955-2219(01)00484-8

Google Scholar

[8] S. Bernik, N. Daneu, Characteristics of ZnO-based varistor ceramics doped with Al2O3, J. Eur. Ceram. Soc. 27(2007) 3161-3170.

DOI: 10.1016/j.jeurceramsoc.2007.02.176

Google Scholar

[9] C.W. Nahm, Improvement of electrical properties and aging characteristics of Pr-Co-Cr-Y- modified ZnO varistor by Al2O3 doping, Mater. Sci. Eng. 151B (2008) 146-151.

DOI: 10.1016/j.mseb.2008.05.023

Google Scholar

[10] C.W. Nahm, Microstructure and electrical properties of Al2O3–doped ZPCCYA-based varistors, Mater. Lett. 62 (2008) 2900-2903.

DOI: 10.1016/j.matlet.2008.01.068

Google Scholar

[11] D.R. Clarke, Varistor ceramics, J. Am. Ceram. Soc. 82 (1999) 485-502.

Google Scholar

[12] C.W. Nahm, The effect of sintering temperature on electrical properties and accelerated aging behavior of PCCL-doped ZnO varistors, Mater. Sci. Eng. 136B (2007) 134-139.

DOI: 10.1016/j.mseb.2006.09.010

Google Scholar

[13] S.Y. Chun, N. Mizutani, Mass transport via grain boundary in Pr-based ZnO varistors and related electrrcal effects, Mater. Sci. Eng. 79B (2001) 1-5.

DOI: 10.1016/s0921-5107(00)00552-3

Google Scholar

[14] K. Mukae, T. Tsuda, I. Nagasawa, Non-ohmic properties of ZnO-rare earth metal oxide-Co3O4 ceramics, Jpn. J. Appl. Phys. 16 (1977) 1361-1368.

DOI: 10.1143/jjap.16.1361

Google Scholar

[15] C.W. Nahm, Microstructure and electrical properties of Tb-doped zinc oxide-based ceramics, J. Non-Crystall. Solids 353 (2007) 2954-2957.

DOI: 10.1016/j.jnoncrysol.2007.06.041

Google Scholar

[16] C.W. Nahm, Nonlinear electrical properties and stability of Zn-Pr-Co-Er-M (M=Ni, Mg, Cr) oxide-based varistors, J. Mater. Sci. 41 (2006) 1635-1638.

DOI: 10.1007/s10853-005-2185-3

Google Scholar

[17] H.H. Hng, K.M. Knowles, Microstructure and current-voltage characteristics of praseodymium- doped zinc oxide varistors containing MnO2, Sb2O3 and Co3O4, J. Mater Sci. 37 (2002) 1143-1154.

Google Scholar

[18] T. Ogasawara, R. Tanaka, K. Sugawara, T. Sugawara, Effect of the additives on the nonlinear coefficient of ZnO varistor. J. Ceram. Soc. Jpn. 108 (2000) 565-570.

DOI: 10.2109/jcersj.108.1258_565

Google Scholar

[19] H. Feng, Z.J. Peng, X.L. Fu, et al., Effect of TiO2 doping on microstructural and electrical properties of ZnO-Pr6O11-based varistor ceramics, J. Alloys Compd. 497 (2010) 304-307.

DOI: 10.1016/j.jallcom.2010.03.047

Google Scholar

[20] H. Feng, Z.J. Peng, X.L. Fu, et al., Effect of SnO2 doping on microstructural and electrical properties of ZnO-Pr6O11 based varistor ceramics, J. Alloys Compd. 509 (2011) 7175-7180.

DOI: 10.1016/j.jallcom.2011.04.042

Google Scholar

[21] X.F. Cheng, W.H. Leng, D.P. Liu, et al., Enhanced photoelectrocatalytic performance of Zn-doped WO3 photocatalysts for nitrite ions degradation under visible light, Chemosphere 68 (2007) 1976-(1984).

DOI: 10.1016/j.chemosphere.2007.02.010

Google Scholar

[22] M. Hibino, W. Han, T. Kudo, Electrochemical lithium intercalation into a hexagonal WO3 framework and its structural change, Solid State Ionics 135 (2000) 61-69.

DOI: 10.1016/s0167-2738(00)00332-5

Google Scholar

[23] S.T. Li, F.Y. Liu, X.L. Song, Functional additives in ZnO varistor ceramics, J. Ceram. 18 (1997) 73-77.

Google Scholar

[24] C.W. Nahm, B.C. Shin, B.H. Min, Microstructure and electrical properties of Y2O3-doped ZnO-Pr6O11-based varistor ceramics, Mater. Chem. Phys. 82 (2003) 157-164.

DOI: 10.1016/s0254-0584(03)00213-x

Google Scholar

[25] Z.J. Peng, X.L. Fu, Y.X. Zang, et al., Influence of Fe2O3 doping on microstructural and electrical properties of ZnO-Pr6O11 based varistor ceramic materials, J. Alloys Compd. 2010, 508(2): 494-499.

DOI: 10.1016/j.jallcom.2010.08.100

Google Scholar

[26] M.E. EI-Dahshan, D.P. Whittle, J. Stringer, The oxidation of cobalt-tungsten alloys, Corros. Sci. 16 (1976) 77-82.

DOI: 10.1016/0010-938x(76)90032-9

Google Scholar

[27] A. Cavaleiro, M.T. Vieira, Characterization of a sputtered amorphous W-C-Co coating annealed in air, Thin Solid Films 228 (1993) 80-86.

DOI: 10.1016/0040-6090(93)90569-b

Google Scholar

[28] S. Rajagopal, D. Nataraj, O. Yu Khyzhun, et al., Hydrothermal synthesis and electronic properties of FeWO4 and CoWO4 nanostructures, J. Alloys Compd. 493 (2010) 340-345.

DOI: 10.1016/j.jallcom.2009.12.099

Google Scholar

[29] M. Imura, T. Tanaka, M. Homma, M. Okada, Nonlinear current-voltage characteristics of double-layered ZnO/RxOy (R=La, Ce, Pr, Nd) sputtered films, Mater. Trans. 35 (1994) 730-734.

DOI: 10.2320/matertrans1989.35.730

Google Scholar