Strength Hierarchy for Nano-Sized Crystals

Article Preview

Abstract:

A concept of atomic mechanisms governing strength of nanosized defect-free crystals is presented. It is exhibited that these mechanisms consist in local instability of the lattice. Two main reasons for localization of instability in three-dimension (3D) crystals are analyzed, namely, (i) fluctuation of local stresses induced by thermal vibrations of atoms, and (ii) non-uniform distribution of local stresses caused by a surface tension. Based on this conception, explanations of both the temperature dependence of strength of 3D nanocrystals and scale effect are given. Ideas on the reasons for and regularities of change in strength at transition from 3D to 2D (graphene) and 1D (monatomic chain) crystals are represented. It is shown that dimensionality of crystal is one of the main factors governing strength of defect-free crystals. Experimental values of the strength of carbon monatomic chains are given, which times exceeds the strength of graphene and is the highest attainable level of strength in the world.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 592-593)

Pages:

301-306

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Mikhailovskij, E. Sadanov, S. Kotrechko, V. Ksenofontov, T. Mazilova: Phys. Rev. B Vol. 87 (2013) p.045410.

DOI: 10.1103/physrevb.87.045410

Google Scholar

[2] S.A. Kotrechko, A.V. Filatov, A.V. Ovsjannikov: Theor. Appl. Fract. Mech. 45 (2006) 92–99.

Google Scholar

[3] S. Kotrechko, A. Ovsjannicov: Phil. Mag. Vol. 89 (2009) p.3049.

Google Scholar

[4] S. Kotrechko, O. Filatov, O. Ovsjannikov: Materials Science Forum Vols. 567-568 (2007) p.65.

DOI: 10.4028/www.scientific.net/msf.567-568.65

Google Scholar

[5] Peng Wang, 1 Wu Chou, Anmin Nie, Yang Huang, Haimin Yao, and Hongtao Wang: J. Appl. Phys. Vol. 110, (2011) p.093521.

Google Scholar

[6] M. Cˇerny, P. Šestak, J. Pokluda: Comp. Mater. Sci. Vol. 55 (2012) p.337.

Google Scholar

[7] S. Kotrechko, О. Ovsjannikov, V. Lidych: Metal Phys. Adv. Tech. Vol. 34 (2012) p.1517 (in Russian).

Google Scholar

[8] J. Diao , K. Gall, M. L. Dunn, J. A. Zimmerman: Acta Mat. Vol. 54 (2006) p.643.

Google Scholar

[9] J. R. Greer , J. Th.M. De Hosson: Progr. Mater. Sci. Vol. 56 (2011) p.654.

Google Scholar

[10] H.A. Wu: Mech. Res. Communications Vol. 33 (2006) p.9.

Google Scholar

[11] L.I. Fedorova, I.M. Mikhailovskii: Sov. Phys. Solid State Vol. 28(4) (1986) p.708.

Google Scholar

[12] H. Bei , S. Shim , G.M. Pharr , E.P. George: Acta Mat. Vol. 56 (2008) p.4762.

Google Scholar

[13] A. Shpak, S. Kotrechko, T. Mazilova and I. Mikhailovskij: Sci. Technol. Adv. Mater. Vol. 10 (2009) p.045004.

Google Scholar

[14] T. Belytschko, S. P. Xiao, G. C. Schatz, and R. S. Ruoff: Phys. Rev B Vol. 65 (2002) p.235430.

Google Scholar

[15] Seyed Ehsan Habibi, M. Farid, M.H. Kadivar: Comp. Mat. Sci. Vol. 48 (2010) p.372.

Google Scholar

[16] T. Tohei, A. Kuwabara, F. Oba, and I. Tanaka: Phys. Rev. B Vol. 73 (2006) p.064304.

Google Scholar

[17] Fang Liu: Phys. Rev B Vol. 76 (2007) p.064120.

Google Scholar

[18] Changgu Lee, Xiaoding Wei, J. W. Kysar, James Hone1: Science Vol. 321 (2008) p.385.

Google Scholar

[19] D. W. Brenner: Phys. Rev. B Vol. 42 (1990) p.9458.

Google Scholar