High-Temperature Elastic Properties of Ceramics in the System MgO-Al2O3-SiO2 Measured by Impulse Excitation

Article Preview

Abstract:

Youngs moduli of talc-based ceramics from the system MgO-Al2O3-SiO2 are measured for temperatures up to 1000 °C via impulse excitation. It is shown that, after pressing at 50 MPa and firing at 1280 °C, MgO-rich compositions exhibit higher porosity and lower Youngs moduli (approximately 2030 % lower than predicted via micromechanical relations). The Young moduli of materials with less MgO decrease with temperature, but those of MgO-rich ceramics increase with temperature and exhibit a large hysteresis between heating and cooling. Lower absolute values are mainly due to increased porosity, but the reason for the modulus increase with temperature and the hysteresis is the higher enstatite content in the MgO-rich compositions. For a special composition the Youngs moduli are more or less temperature-independent and without significant hysteresis effects, probably due to the low content of enstatite and the high content of sapphirine.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 592-593)

Pages:

696-699

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Menčík: Strength and Fracture of Glass and Ceramics (Elsevier, Amsterdam 1992).

Google Scholar

[2] C. Bubeck: J. Eur. Ceram. Soc. Vol. 29 (2009), p.3113.

Google Scholar

[3] F.A. Costa Oliveira: J. Non-Cryst. Solids Vol. 351 (2005), p.1623.

Google Scholar

[4] M.L. Sandoval, M.A. Pucheu, M.H. Talou, A.G. Tomba Martinez and M.A. Camerucci: J. Eur. Ceram. Soc. Vol. 29 (2009), p.3307.

Google Scholar

[5] W. Pabst, E. Gregorová, G. Tichá and E. Týnová: Ceram. -Silikaty Vol. 48 (2004), p.41.

Google Scholar

[6] W. Pabst and E. Gregorová: submitted to Ceram. -Silikaty (2013).

Google Scholar

[7] W. Pabst, E. Gregorová and A. Musilová: submitted to Ceram. -Silikaty (2013).

Google Scholar

[8] R.F. Cook and G. M. Pharr, in: Structure and Properties of Ceramics, edited by M.V. Swain, volume 11 of Materials Science and Technology, chapter 7, VCH, Weinheim (1994).

Google Scholar

[9] M.A. Camerucci and A. L. Cavalieri: Ceram. Int. Vol. 34 (2008), p.1753.

Google Scholar

[10] M.B. Volf: Mathematical Approach to Glass (Elsevier, Amsterdam 1988).

Google Scholar

[11] W. Pabst and E. Gregorová: Ceram. -Silikaty Vol. 48 (2004), p.14.

Google Scholar

[12] W. Pabst, E. Gregorová, I. Sedlářová, M. Černý: J. Eur. Ceram. Soc. Vol. 31 (2011), p.2721.

Google Scholar

[13] W. Pabst, E. Gregorová, D. Malangré, J. Hostaša: Ceram. Int. Soc. Vol. 38 (2012), p.5931.

Google Scholar

[14] A.M. Efremov, G. Bruno and B.R. Wheaton: J. Eur. Ceram. Soc. Vol. 31 (2011), p.281.

Google Scholar