Key Engineering Materials Vols. 592-593

Paper Title Page

Abstract: Slip localization is widely observed in metallic polycrystals after tensile deformation, cyclic deformation or pre-irradiation followed by tensile deformation. Such strong deformation localized in thin slip bands induces local stress concentrations in the quasi-elastic matrix around, at the intersections between slip bands (SBs) and grain boundaries (GBs) where microcrack initiation is often observed. Since the work of Stroh, such stress fields have been mostly modeled using the dislocation pile-up theory which leads to stress singularities similar to the LEFM ones. The Griffith criterion has then been widely applied, leading usually to strong underestimations of the macroscopic stress to GB crack initiation. In fact, slip band thickness is finite: 20nm-1000nm depending on material, temperature and loading conditions. Then, many slip planes are plastically activated through the thickness, and not only one single atomic plane. To evaluate more realistic stress fields, numerous crystalline finite element (FE) computations have been carried out using microstructure inputs (slip band aspect ratio, crystal and GB orientation...). A strong influence of slip band thickness close to the slip band corner has been highlighted, which is not accounted for by the pile-up theory. But far away, the thickness has a negligible effect and the predicted stress fields are close to the one predicted by the pile-up theory. Closed-form expressions are deduced from the numerous FE computation results allowing a straightforward prediction of GB stress fields. Slip band plasticity parameters, such as length and thickness, as well as crystal orientation, GB plane and remote stress are taken into account. The dependence with respect to the various parameters can be understood in the framework of matching expansions usually applied to cracks with V notches of finite thickness. As the exponent of the GB stress close-field is only about one-half of the pile-up or LEFM crack one, the Griffith criterion may not be used for GB microcrack prediction in case of finite thickness. That is why finite crack fracture mechanics is used together with both energy and stress criteria. Taking into account SB finite thickness, t>0, leads to predicted remote stresses to GB microcrack initiation three to six times lower than the ones predicted using the to pile-up theory, in agreement with experimental data.
61
Abstract: Atomic planes at three different positions ABC form the stacking along the <111> directions in the FCC lattice and similarly along the <0001> hexagonal axis in the C40 structure in transition metal silicides. However, the structures of silicides are constituted of several stacking of identical atomic planes at four different positions: AB in C11b structures of e.g. MoSi2, ABC in C40 structures of e.g. VSi2 and ABDC in C54 structures of e.g. TiSi2 disilicides. The occurrence of the fourth position essentially influences the properties of defects and consequently the mechanical properties of C40 materials.
67
Abstract: AS21 magnesium alloy (2.1Al-1Si-balance Mg in wt.%) and the alloy reinforced with short δ-Al2O3 fibres (Saffil®) were deformed in compression at temperatures between 23 and 300 °C. Stress relaxation tests were performed in order to reveal features of the thermally activated dislocation motion. Internal and effective components of the applied stress have been estimated. The activation volume decreases with increasing effective stress. The values of the activation volume and the activation enthalpy indicate that the main thermally activated process in the alloy as well as in the composite is the dislocation motion in non-compact planes.
71
Abstract: Magnesium alloy EZ10 was deformed in tension at temperatures from room temperature up to 400 °C with an initial strain rate of 2.7x10-3 s-1. Deformation tests showed a rapid decrease of the tensile yield strength at temperatures higher than 300 °C. Microstructure of the deformed samples was analysed with light microscope. Fracture mechanisms were estimated using scanning electron microscopy.
75
Abstract: We introduce a mesoscopic framework that is capable of simulating the evolution of dislocation networks and, at the same time, spatial variations of the stress, strain and displacement fields throughout the body. Within this model, dislocations are viewed as sources of incompatibility of strains. The free energy of a deformed solid is represented by the elastic strain energy that can be augmented by gradient terms to reproduce dispersive nature of acoustic phonons and thus set the length scale of the problem. The elastic strain field that is due to a known dislocation network is obtained by minimizing the strain energy subject to the corresponding field of incompatibility constraints. These stresses impose Peach-Koehler forces on all dislocations and thus drive the evolution of the dislocation network.
79
Abstract: Austenitic Stainless Steels (SSs) are presently being investigated as appropriate candidates for structural components for the future Generation IV nuclear reactors. Austenitic SSs of different grades will operate at high temperature and suffer low stress loading for decades. At the laboratory, austenitic SSs have been subjected to creep tests at various stresses and temperatures between 500°C to 700°C, up to nearly 50·103h. Interrupted creep tests show an acceleration of the reduction in cross-section only during the last 15% of creep lifetime which may be called macroscopic necking. The modeling of necking using a modified Norton power-law allows lifetime predictions in agreement with experimental data up to a few thousand hours only. And the experimental results show that, the extrapolation of the 'stress lifetime curves obtained at high stress leads to large overestimations of lifetimes at low stress. After FEGSEM observations, these overestimates are mainly due to additional intergranular cavitation along grain boundaries. The modeling of cavity growth by vacancy diffusion along grain boundaries coupled with continuous nucleation proposed by Riedel has been carried out. Lifetimes for long term creep are rather correctly predicted with respect to experimental lifetimes. The lifetime curves predicted by either the necking model or the creep cavity one cross each other, defining transition times of five to ten thousand hours for temperatures between 600°C and 700°C, in agreement with experimental curves.
83
Abstract: This paper presents a 3D discrete dislocation dynamics (DDD) model describing dislocation processes in crystals subjected to loadings at high temperatures. Smooth dislocations are approximated by short straight segments. Every segment is acted upon by a Peach-Koehler force obtained by summing up forces from all dislocation segments and a force due to the applied stress. The model addresses interactions between individual dislocations and rigid precipitates. The model is applied to a migration of low angle tilt boundaries (LATBs) characterized by different initial dislocation density and constrained by precipitates of different sizes. The calculations showed that, for applied shear stresses σxz lower than a certain threshold σcrit.(h), the LATB is inhibited by the precipitate field. For σxz above σcrit.(h), the LATB passes through the precipitate field. Some combinations of σxz and h lead to a decomposition of the LATB. The LATBs thus may evolve in three distinct modes depending on the initial microstructure. The threshold stress behaviour is known from creep tests of dispersion-strengthened NiCr alloys [1]. Furthermore, the critical stresses obtained from our calculations are below Orowan stresses for corresponding particle distribution. This behaviour has been also reported in creep experiments [1].
87
Abstract: Lattice models allow length scale dependent micro-structural features and damage mechanisms to be incorporated into analyses of mechanical behaviour. They are particularly suitable for modelling the fracture of nuclear graphite, where porosity generates local failures upon mechanical and thermal loading. Our recent 3D site-bond model is extended here by representing bonds with spring groups. Experimentally measured distributions of pore sizes in graphite are used to generate models with pores assigned to the bonds. Microscopic damage is represented by failure of normal and shear springs with different criteria based on force and pore size. Macroscopic damage is analysed for several loading cases. It is shown that, apart from uniaxial loading, the development of micro-failures yields damage-induced anisotropy in the material. This needs to be accounted for in constitutive laws for graphite behaviour in FEA of cracked reactor structures.
92
Abstract: Non-planar dislocation dissociations and cores play a fundamental role in mechanical properties of many materials. In this contribution, we concentrate on the complex structures arising from a large number of possible metastable stacking faults in disilicides with the C11b structure, specifically MoSi2. First, gamma-surfaces for the planes with high atomic density in this intermetallic are presented. Employing these results, possible configurations of dislocation dissociations are discussed and related to the deformation behavior.
96
Abstract: In the present work we establish some specific features of the fracture and behavior of anisotropic semiconductor crystals GaSe and InSe under mechanical loading and hydrogenation, which undergoes in the course of preparation of the specimens, their cutting, spalling, and other technological operations of the production of future semiconductor solar energy devices.
100

Showing 11 to 20 of 187 Paper Titles