Analysis of Wetting of Perylene Diimide Thin Films-on-Glass by Water

Article Preview

Abstract:

Perylene tetracarboxylic diimide (PTCDI), derivatives have attracted the attention of the scientific community owing to their thermal stability, electron affinity-enabling n-type semiconductor behaviour and useful photophysical properties. Thin films of six new perylene tetracarboxylic diimides were fabricated on glass substrate by spin coating. The contact angles made by water on these six substrates, some with alkyl chain derivatives and the others with polar side chains, were measured using a precision contact angle goniometer. The alignment of these films on glass substrates are inferred from the contact angle data and the results are compared with those of the (self) alignment in liquid state. Derivatives with alkyl chains were seen to interact more with water, causing a lower contact angle compared to the more polar derivatives. This counter-intuitive result is interpreted in terms of molecular alignment of samples on the glass substrates.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

1074-1077

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burn and A.B. Holmes: Nature 347 (1990) p.539.

Google Scholar

[2] I. Seguy, P. Jolinat, P. Destruel, J. Farence, R. Mamy, H. Bock, J. IP and T.P. Nguyen, J: Appl. Phys. 89 (2001) p.5442.

DOI: 10.1063/1.1365059

Google Scholar

[3] S.R. Forrest: Nature 428 (2004) p.911.

Google Scholar

[4] A. Facchetti: Mater. Today 10 (2007) 28.

Google Scholar

[5] B.A. Gregg, M.A. Fox and A.J. Bard: J. Phys. Chem. 93 (1989) p.4227.

Google Scholar

[6] B.A. Gregg: Mol. Cryst. Liq. Cryst. 257 (1994) p.219.

Google Scholar

[7] A.M. Hor and R.O. Loutfy: Thin Solid Films 106 (1983) p.291.

Google Scholar

[8] K. -Y. Law: Chem. Rev. 93 (1993) p.449.

Google Scholar

[9] T. Del Cano, J. Duff and R. Aroca: Appl. Spectrosc. 56 (2002) p.744.

Google Scholar

[10] P.A. Antunes, C.J.L. Constantino and R. Aroca: Langmuir 17 (2001) p.2958.

Google Scholar

[11] M.C. Petty, Langmuir-Biodegett Films: An Introduction, Cambridge University Press, Cambridge, (1996).

Google Scholar

[12] F. Wurthner: Chem. Commun. (2004) p.1564.

Google Scholar

[13] B.A. Jones, M.J. Ahrens, M.H. Yoon, A. Facchetti, T.J. Marks and M.R. Wasielwski: Angew. Chem. Int. Ed. 43 (2004) p.6363.

Google Scholar

[14] L.X. Park, D.G. Hamilton, E.A. McGehee and K.A. McMenimen: J. Am. Chem. Soc. 125 (2003) p.10586.

Google Scholar

[15] H. Levanon, T. Galili, A. Regev, G.P. Wiederrecht, W.A. Svec and M.R. Wasielewski: J. Am. Chem. Soc. 120 (1998) p.6366.

DOI: 10.1021/ja980409c

Google Scholar

[16] M.P. Debreczeny, W.A. Svec, E.M. Marsh and M.R. Wasielewski: J. Am. Chem. Soc. 118 (1996) p.8174.

Google Scholar

[17] S.K. Lee, Y.B. Zu, A. Herrmann, X. Geerts, K. Mullen and A.J. Bard: J. Am. Chem. Soc. 121 (1999) p.3513.

Google Scholar

[18] G.P. Wiederrecht and M.R. Wasielewski: J. Am. Chem. Soc. 120 (1998) p.3231.

Google Scholar

[19] R.O. Loutfy, A.M. Hor, P. Kazmaier and M.J. Tam: J. Imag. Sci. 33 (1989) p.151.

Google Scholar

[20] V. Madhurima, K Sudheendran and K.C. James Raju: J. Mol. Liq. 133 (2007) p.28.

Google Scholar

[21] G. Boobalan, P.M. Imran and S. Nagarajan: Supramol. Chem. 24 (2012) p.238.

Google Scholar

[22] G. Boobalan, P.M. Imran and S. Nagarajan: Superlattice Microst. 51 (2012) p.921.

Google Scholar

[23] Y.K. Jo and S-B Wen: J. Phy. D; Appl. Phy. 46 (2013) p.035302.

Google Scholar