Defects Generation in Ge/GeO2 Structure

Article Preview

Abstract:

Thermal oxidation of Ge was performed in dry oxygen ambience at atmospheric pressure at temperature ranging between 375 and 575°C. From SE analysis, the slope of Ge oxide growth and extinction coefficient (k) increases while refractive index (n) does not change with oxidation temperature. The reduction of activation energy for Ge thermal oxidation was explained by the retardation of diffusion oxidant through GeO2 film during Ge oxidation. The generation of an oxygen-defect region in the Ge oxide layer at 490°C oxidation was confirmed by XPS analysis and an O2 anneal at 375°C was effective to reduce this oxygen deficiency.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

1069-1073

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. M. Sze: Physics of Semiconductor Devices (Wiley, New York, 1981) 2nd ed.

Google Scholar

[2] Madelung, O (eds. ) Intrinsic Properties of Group IV Elements and II-V, II-VI, and IV Compounds, Springer Berlin (1987).

Google Scholar

[3] Y. Kamata, Materials Today 11 (2008) 30.

Google Scholar

[4] C. O. Chui, H. Kim, D. Chi, B.B. Triplett, P.C. McIntyre, and K.C. Saraswat, IEDM 2002 Tech. Dig. (2002) 437.

Google Scholar

[5] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, and S. Takagi, IEDM 2011, p.56.

Google Scholar

[6] W. L. Jolly and W. M. Latimer: J. Am. Chem. Soc. 74 (1952) 5757.

Google Scholar

[7] J. T. Law and P. S. Meigs: J. Electrochem. Soc. 104 (1957) 154.

Google Scholar

[8] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino: Appl. Phys. Lett. 76 (2000) 2244.

Google Scholar

[9] X. J. Zhang, G. Xue, A. Agarwal, R. Tsu, M. A. Hasan, J. E. Greene, A. Rockett: J. Vac. Sci. Technol. A 11 (1993) 2553.

Google Scholar

[10] H. Murakami, M. Miura, A. Ohta, R. Yogauchi, S. Higashi and S. Miyazaki, Ext. Abstr. of 4th International SiGe Technology and Device Meeting (ISTDM), 2008, p.165.

Google Scholar

[11] K. Kita, S. Suzuki, H. Nomura, T. Takahashi, T. Nishimura, and A. Toriumi, Jpn. J. Appl. Phys. 47, (2008) 2349.

Google Scholar

[12] K. Kita, C.H. Lee, T. Nishimura, K. Nagashio, and A. Toriumi, ECS Trans. 19 (2009) 101.

Google Scholar

[13] S. K. Wang , K. Kita, C. H. Lee, T. Tabata, T. Nishimura, K. Nagashio, and A. Toriumi, J. Appl. Phys. 108 (2010) 054104.

Google Scholar

[14] H. Koumo, Y. Suzuki, Y. Oniki, Y. Iwazaki, and T. Ueno, ECS Trans. 33 (2010) 111.

Google Scholar

[15] A. Toriumi, T. Tabata, C.H. Lee, T. Nishimura, K. Kita, and K. Nagashio, Microelectron. Eng. 86 (2009) 1571.

Google Scholar

[16] S. K. Sahari, H. Murakami, T. Fujioka, T. Bando, A. Ohta, K. Makihara, S. Higashi, S. Miyazaki, Jpn. J. Appl. Phys. 50 (2011) 04DA12.

DOI: 10.7567/jjap.50.04da12

Google Scholar

[17] B. E. Deal and A. S. Grove, J. Appl. Phys. 36 (12) (1965) 3770.

Google Scholar

[18] M. K. Schurman and M. Tomozawa, J. Non-Crystalline Solids 202, (1996) 93.

Google Scholar