The Effect of Solution Temperature on Electrodeposit-ZnO Thin Film

Article Preview

Abstract:

Zinc Oxide (ZnO) has been successfully electrodeposited on a fluorine doped tin oxide (FTO) coated glass substrates using a simple aqueous solution containing zinc nitrate hydrate by low temperature galvanostatic electrolysis. The solution temperature of zinc nitrate hydrate was varied from 60°C to 75°C in order to investigate the effect of solution temperature on electrodeposit-ZnO thin film. The properties of ZnO film were investigated by X-ray diffraction (XRD), Field-Emission Scanning electron microscope (FE-SEM) and Atomic force microscopy (AFM). The solution temperature shows a significant effect on structural and morphological of deposit-ZnO. The XRD patterns exhibited the increment of (002)-ZnO peak when the solution temperature increased and the highest peak was observed at 75°C. The morphology of ZnO was changed from planar to nanopillar with the solution temperature. In conclusion, ZnO nanopillar with an excellent structural properties was obtained at solution temperature of 75°C.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

1131-1135

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Sarti and R. Einhaus, Solar Energy Mater. Solar Cells, 72(1-4), 27 (2002).

Google Scholar

[2] M.A. Green, M.J. Keevers, Prog. Photovoltaics. 3, 189 (1995).

Google Scholar

[3] W. Shockley, H. J. Queisser, J. Appl. Phys. 32, 510 (1961).

Google Scholar

[4] A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, Appl. Phys. Lett., 88, 163502 (2006).

DOI: 10.1063/1.2194315

Google Scholar

[5] M. Izaki, T. Shinagawa, K. Mizuno, Y. Ida, M. Inaba, and A. Tasaka, J. Phys. D: Appl. Phys., 40, 3326 (2007).

DOI: 10.1088/0022-3727/40/11/010

Google Scholar

[6] G. K. Paul, R. Ghosh, S. K. Bera, S. Bandyopadhyay, T. Sakurai, K. Akimoto, Chem. Phys. Lett. 463, 117(2008).

Google Scholar

[7] B. M. Fariza, J. Sasano, T. Shinagawa, H. Nakano, S. Watase, M. Izaki, Journal of The Electrochemical Society, 158(10), D621-D625 (2011).

DOI: 10.1149/1.3623776

Google Scholar

[8] B. M. Fariza, J. Sasano, T. Shinagawa, S. Watase, M. Izaki, Thin Solid Films, 520(6), 2261-2264 (2012).

DOI: 10.1016/j.tsf.2011.09.022

Google Scholar

[9] L. Wang, M. Tao, Electrochemical and Solid-State Letters, 10(9), H248-H250 (2007).

Google Scholar

[10] K. Mizuno, M. Izaki, K. Murase, T. Shinagawa, M. Chigane, M. Inaba, A. Tasaka, Y. Awakura, Journal of The Electrochemical Society, 152(4), C179-C182 (2005).

DOI: 10.1149/1.1862478

Google Scholar

[11] M. Izaki, S. Sasaki, F. B. Mohamad, T. Shinagawa, T. Ohta, S. Watase, J. Sasano, Thin Solid Films, 520, 1976-1983 (2012).

DOI: 10.1016/j.tsf.2011.08.079

Google Scholar