Chemical Composition Analysis of TiAlBN Nanocomposite Coating Deposited via RF Magnetron Sputtering

Article Preview

Abstract:

TiAlBN nanocomposite coating have been successfully deposited on AISI 316 substrate via RF magnetron sputtering by varying nitrogen-to-total flow ratio (RN) of 5, 15, 20, 25%, as well as varying substrate temperature of 100, 200, 300, and 400 oC; using single Ti-Al-BN hot-pressed target. Chemical compositions of the coatings were analysed using X-ray photoelectron spectroscopy (XPS). XPS results showed that the TiAlBN nanocomposite coating reaches a nitride saturated state at higher RN (e.g 15, 20, and 25%) and boron concentration was found to be approximately 9 at.%. However, as the concentration of nitrogen decreases at lower RN (5%), boron concentration was found to increase to 16.17 at. %. This is due to the increase of TiB2 phase in the coating. Variations of substrate temperatures were found to give no significant effect on the chemical composition of the deposited TiAlBN nanocomposite coating.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

551-555

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Morales-Hernández, L. García-Gonzáles, J. Muñoz-Saldaña, F.J. Espinoza-Beltrán, Vacuum 76 (2004) 161-164.

DOI: 10.1016/j.vacuum.2004.07.059

Google Scholar

[2] C. Rebholz, M.A. Monclus, M.A. Baker, P.H. Mayrhofer, P.N. Gibson, A. Leyland, A. Matthews, Surf. Coat. Technol. 201 (2007) 6078-6083.

DOI: 10.1016/j.surfcoat.2006.08.121

Google Scholar

[3] M.A. Baker, M.A. Monclus, C. Rebholz, P.N. Gibson, A. Leyland, A. Matthews, Thin Solid Films 518 (2010) 4273-4280.

DOI: 10.1016/j.tsf.2009.12.109

Google Scholar

[4] C. Rebholz, J.M. Schneider, A.A. Voevodin, J. Steinebrunner, C. Charitidis, S. Logothetidis, A. Leyland, A. Matthews, Surf. Coat. Technol. 113 (1999) 126-133.

DOI: 10.1016/s0257-8972(98)00840-8

Google Scholar

[5] M.A. Baker, S. Klose, C. Rebholz, A. Leyland, A. Matthews, Surf. Coat. Technol. 151–152 (2002) 338-343.

Google Scholar

[6] D.V. Shtansky, K. Kaneko, Y. Ikuhara, and E.A. Levashov, Surf. Coat. Technol. 148 (2001) 206-215.

Google Scholar

[7] I. Zukerman, A. Raveh, Y. Shneor, R. Shneck, J.E. Klemberg-Saphieha, L. Martinu, Surf. Coat. Technol. 201 (2007) 6161-6166.

DOI: 10.1016/j.surfcoat.2006.08.136

Google Scholar

[8] R. Anvi, I. Fried, A. Raveh, I. Zukerman, Thin Solid Films 516 (2008) 5386-5392.

DOI: 10.1016/j.tsf.2007.07.093

Google Scholar

[9] J. -K. Park, J. -Y. Cho, H. -T. Jeon, Y. -J. Baik, Vacuum 84 (2010) 483-487.

Google Scholar

[10] D.C. Tsai, Y.L. Huang, S.R. Lin, D.R. Jung, F.S. Shieu, Nucl. Instrum. Methods Phys. Res. Sect. B 269 (2011) 685-691.

Google Scholar

[11] D.C. Tsai, Y.L. Huang, S.R. Lin, S.C. Liang, F.S. Shieu, Appl. Surf. Sci. 257 (2010) 1361-1367.

Google Scholar

[12] D.C. Tsai, Y.L. Huang, S.R. Lin, D.R. Jung, S.Y. Chang, F.S. Shieu, J. Alloy. Compd. 509 (2011) 3141–3147.

Google Scholar

[13] M. Niederberger, N. Pinna, Metal Oxide Nanoparticles in Organic Solvents, first ed., Springer, London, (2009).

Google Scholar

[14] Z.M. Rosli, W.L. Kwan, J.M. Juoi, N. Nayan, Z. Mahamud, Y. Yusuf, Adv. Mat. Res. V626 (2013) 298-301.

Google Scholar

[15] Z.M. Rosli, Z. Mahamud, J.M. Juoi, N. Nayan, K.W. Loon, Y. Yusuf, Solid And Structures, Vol 1, No. 1, (2012) 10-15.

Google Scholar