Effect of Alkali Treatment on Crystalline Structure of Cellulose Fiber from Mendong (Fimbristylis globulosa) Straw

Article Preview

Abstract:

The research aim is to investigate the effect of alkali treatment on the crystalline structure of Mendong fiber. The experiment was conducted by immerse fibers in 100 ml NaOH solution by a concentration of 2.5%, 5%, 7.5%, and 10% for 2 hours at the room temperature. The specimens were characterized by X-ray diffraction method. The morphology of fiber treated by alkali was observed by Scanning Electron Microscope. The result shows that the crystalline structure of cellulose in Mendong fiber was changed in alkali treatment. It was found that both the degree of crystallinity and crystalline index of Mendong fiber was increased until alkali treatment concentration of 7.5%.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

720-724

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Li, L. G. Tabil, and S. Panigrahi: Journal of Polymers and the Environment, vol. 15, no. 1 (2007), p.25–33.

Google Scholar

[2] Q. Mu, C. Wei, and S. Feng: Polymer Composites, vol 30 (2009), p.131 – 137.

Google Scholar

[3] E. Gümüskaya, M. Usta, and H. Kirci: Polymer Degradation and Stability, vol. 81, no. 3 (2003) p.559–564.

DOI: 10.1016/s0141-3910(03)00157-5

Google Scholar

[4] M. Poletto, V. Pistor, M. Zeni, and A. J. Zattera: Polymer Degradation and Stability, vol. 96, no. 4 (2011), p.679–685.

DOI: 10.1016/j.polymdegradstab.2010.12.007

Google Scholar

[5] N. Terinte, R. Ibbett, and K. C. Schuster: Lenzinger Berichte, vol. 89 (2011), p.118–131.

Google Scholar

[6] H. Suryanto, Y. S. Irawan, E. Marsyahyo, R. Soenoko: Submit to Journal of Natural Fiber (2013).

Google Scholar

[7] I. Taha, L. Steuernagel, and G. Ziegmann: Composite Interfaces, vol. 14, no. 7 (2007), p.669– 684.

Google Scholar

[8] M. S. Islam, K. L. Pickering, and N. J. Foreman: Composites Part A: Applied Science and Manufacturing, vol. 41, no. 5 (2010), p.596–603.

Google Scholar

[9] V. S. Sreenivasan, S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy: Materials and Design, vol. 32, no. 1 (2011), p.453–461.

DOI: 10.1016/j.matdes.2010.06.004

Google Scholar

[10] N. Reddy and Y. Yang: Trends in biotechnology, vol. 23, no. 1 (2005), p.22–7.

Google Scholar

[11] R. M. Sheltami, I. Abdullah, I. Ahmad, A. Dufresne, and H. Kargarzadeh: Carbohydrate Polymers, vol. 88, no. 2 (2012), p.772–779.

DOI: 10.1016/j.carbpol.2012.01.062

Google Scholar

[12] A. El Oudiani, Y. Chaabouni, S. Msahli, and F. Sakli: Carbohydrate Polymers, vol. 86, no. 3 (2011), p.1221–1229.

DOI: 10.1016/j.carbpol.2011.06.037

Google Scholar

[13] G. Cheng, P. Varanasi, C. Li, H. Liu, Y. B. Melnichenko, B. a Simmons, M. S. Kent, and S. Singh: Biomacromolecules, vol. 12, no. 4 (2011), p.933–41.

Google Scholar

[14] M. Le Troedec, D. Sedan, C. Peyratout, J. P. Bonnet, and S. Agnes: Composites Part A, vol. 39 (2008), p.514–522.

Google Scholar

[15] S. Zhang, F. -X. Li, J. Yu, and Y. -L. Hsieh: Carbohydrate Polymers, vol. 81, no. 3 (2010), p.668–674.

Google Scholar

[16] C. J. Knill and J. F. Kennedy: Carbohydrate Polymers, vol. 51, no. 3 (2003), p.281–300.

Google Scholar