[1]
Davidovits, J., High-alkali cements for 21st century concretes. In Concrete Technology, Past, Present and Future. 1994: Metha, P. K, American Concrete Institute, Farmington Hills.
DOI: 10.14359/4523
Google Scholar
[2]
Palomo, A., M.W. Grutzeck, and M.T. Blanco, Alkali-activated fly ashes. A cement for the future. Cement & Concrete Research, 1999. 29(8): pp.1323-1329.
DOI: 10.1016/s0008-8846(98)00243-9
Google Scholar
[3]
Hardjito, D., et al., On the Development of Fly Ash-Based Geopolymer Concrete. ACI Material Journal, 2004. 101(6): pp.467-472.
Google Scholar
[4]
Swanepoel J.C. and Strydom C.A., Utilisation of fly ash in a geopolymeric material. Applied Geochemistry, 2002. 17(8): pp.1143-1148.
DOI: 10.1016/s0883-2927(02)00005-7
Google Scholar
[5]
Hardjito, D., et al., Fly Ash-Based Geopolymer Concrete. Australian Journal of Structural Engineering, 2005. 6: pp.1-9.
Google Scholar
[6]
A.M. Mustafa, A.B., et al., The Processing, Characterization, And Properties Of Fly Ash Based Geopolymer Concrete. Reviews on Advanced Materials Science, 2012. 30: pp.90-97.
Google Scholar
[7]
Khairul Nizar Ismail, Kamarudin Hussin, and Mohd Sobri Idris, Physical, Chemical and Mineralogical Properties of Fly Ash. Journal of Nuclear and Related Technology, 2007. 4(Special Edition 2007): pp.47-51.
Google Scholar
[8]
Fernandez-Jimenez, A., A. Palomo, and M. Criado, Microstructure development of alkali-activated fly ash cement: a descriptive model. Cement and Concrete Research, 2005. 35: pp.1204-1209.
DOI: 10.1016/j.cemconres.2004.08.021
Google Scholar
[9]
A. M. Mustafa, A.B., et al., The relationship of NaOH Molarity, Na2SiO3/NaOH Ratio, Fly Ash/Alkaline Activator Ratio, and Curing Temperature to the Strength of Fly Ash-Based Geopolymer. Advanced Materials Research, 2011. 328-330: pp.1475-1482.
DOI: 10.4028/www.scientific.net/amr.328-330.1475
Google Scholar
[10]
A.R. Rafiza, et al., Reviews on the Properties of Aggregates made with or without Geopolymerisation Method. Advanced Materials Research, 2013. 626: pp.892-895.
DOI: 10.4028/www.scientific.net/amr.626.892
Google Scholar
[11]
Halstead W. J., ed. Use of Fly Ash in Concrete. NCHRP 127. 1986, Transportation Research Board, National Research Council: Washington.
Google Scholar
[12]
ASTM C618-92a, Standard specification for fly ash and raw or calcinated natural pozzoland for use as mineral admixture in Portland cement concrete. American Standard for Testing Materials. Annual book of ASTM Standards. Vol. 04. 02. 1994, Pennsylvania.
DOI: 10.1520/cca10260j
Google Scholar
[13]
Sata, V., C. Jaturapitakkul, and K. Kiattikomol, Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete. Construction and Building Materials, 2007. 21: pp.1589-1598.
DOI: 10.1016/j.conbuildmat.2005.09.011
Google Scholar
[14]
Davidovits, J., Geopolymer Chemistry & Applications. 3 ed. 2011, Saint-Quentin: Institut Geopolymere.
Google Scholar
[15]
Fernandez-Jimenez, A. and A. Palomo, Characterisation of fly ashes. Potential reactivity as alkaline cements. Fuel, 2003. 82: pp.2259-2265.
DOI: 10.1016/s0016-2361(03)00194-7
Google Scholar
[16]
J. Temuujin, R. P. Williams, and A.V. Riessen, Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. Journal of Materials Processing Technology, 2009. 209: pp.5276-5280.
DOI: 10.1016/j.jmatprotec.2009.03.016
Google Scholar