Nitrification of Nb-Modified Titanias Prepared by the Solvothermal Method and their Photocatalytic Activities under Visible-Light Irradiation

Article Preview

Abstract:

Niobium modified titania samples were prepared by thermal reaction of titanium tetraisopropoxide and niobium pentaethoxide in 1,4-butanediol at 300 °C (solvothermal method), and the products were nitrified in an NH3 flow at 600 °C. The physicochemical property of the thus-obtained N-and Nb-co-doped titanias and visible-light response photocatalytic activity of FeOx-loaded N-and Nb-co-doped titanias were investigated. The N-and Nb-co-doped titanias had larger absorptions in the visible-light range as compared to the only N-doped titania samples. In ESR spectra of the Nb-modified TiO2 samples annealed at 300 °C after the nitrification, signals due to Ti3+ and oxygen vacancies, which accelerate the recombination of the photo-generated electrons and holes, were clearly observed. On the other hand, for the N-and Nb-co-doped titanias annealed at 500 °C, the signals due to Ti3+ and oxygen vacancies decreased significantly. Actually, the FeOx-loaded N-and Nb-co-doped samples annealed at 500 °C exhibited a higher photocatalytic activity for a photocatalytic decomposition of acetaldehyde under visible-light irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-49

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Sato: Chem. Phys. Lett. Vol. 123 (1986), p.126.

Google Scholar

[2] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga: Science Vol. 293 (2001), p.269.

Google Scholar

[3] S. Iwamoto, W. Tanakulrungsank, M. Inoue, K. Kagawa, and P. Praserthdam: J. Mater. Sci. Lett. Vol. 19 (2000), p.1439.

Google Scholar

[4] Sh. Iwamoto, Se. Iwamoto, M. Inoue, H. Yoshida, T. Tanaka, and K. Kagawa: Chem. Mater. Vol. 17 (2005), p.650.

Google Scholar

[5] H. Ozaki, S. Iwamoto, and M. Inoue: Chem. Lett. Vol. 34 (2005), p.1082.

Google Scholar

[6] H. Ozaki, S. Iwamoto and M. Inoue: Ind. Eng. Chem. Res. Vol. 47 (2008), p.2287.

Google Scholar

[7] M. Hirano and Y. Ichihashi: J. Mater. Sci. Vol. 44 (2009), p.6135.

Google Scholar

[8] S. Zhang, S. B. Ogale, W. Yu, X. Gao, T. Liu, S. Ghosh, G. P. Das, A. T. S. Wee, R. L. Greene, and T. Venkatesan: Adv. Mater. Vo. 21, (2009), p.2282.

Google Scholar

[9] B. K. Kaleji, R. Sarraf-Mamoory, and A. Fujishima: Mater. Chem. Phys. Vol. 132 (2012), p.210.

Google Scholar

[10] H. Ozaki, S. Iwamoto and M. Inoue: J. Phys. Chem. C Vol. 111 (2007), p.17061.

Google Scholar

[11] S. Iwamoto, K. Saito and M. Inoue: Nano Lett. Vol. 1 (2001), p.417.

Google Scholar

[12] Y. Sakatani, J. Nunoshige, H. Ando, K. Okusako, H. Koike, T. Takata, J. N. Kondo, M. Hara and K. Domen: Chem. Lett. Vol. 32 (2003), p.1156.

DOI: 10.1246/cl.2003.1156

Google Scholar

[13] M. Okumura, J. M. Coronado, J. Soria, M. Haruta and J. C. Conesa: J. Catal. Vol. 203 (2001), p.168.

Google Scholar

[14] D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh and M. C. Thurnauer: J. Phys. Chem. B Vol. 107 (2003), p.4545.

Google Scholar

[15] R. D. Shannon: Acta Cryst. A32 (1976), p.751.

Google Scholar