Crack Growth Simulation in the Compressor Blade Subjected to Vibration Using Boundary Element Method

Article Preview

Abstract:

This paper presents results of numerical crack propagation analysis of the compressor blades subjected to transverse vibrations. For stress intensity factor calculation in the half-elliptical crack, a dual boundary element method was used. In this analysis the automated remeshing procedure was used for creation of numerical models with a different crack size. Obtained results of numerical calculations were compared to results of experimental investigations performed for PZL-10W engine compressor blades tested in resonance conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

261-268

Citation:

Online since:

January 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.J. Lourenço, M.L.A. Graça, L.A.L. Franco, O.M.M Silva, Fatigue failure of a compressor blade, Engineering Failure Analysis 15 (2008) 1150–1154.

DOI: 10.1016/j.engfailanal.2007.11.006

Google Scholar

[2] A. Kermanpur, A.H. Sepehri, S. Ziaei-Rad, et al. Failure analysis of Ti6Al4V gas turbine compressor blades, Engineering Failure Analysis 15 (2008) 1052–1064.

DOI: 10.1016/j.engfailanal.2007.11.018

Google Scholar

[3] E. Silveira, G. Atxaga, A.M. Irisarri, Failure analysis of a set of compressor blades, Engineering Failure Analysis 15 (2008) 666–674.

DOI: 10.1016/j.engfailanal.2007.10.002

Google Scholar

[4] L. Witek, Numerical stress and crack initiation analysis of the compressor blades after foreign object damage subjected to high-cycle fatigue, Engineering Failure Analysis 18 (2011) 2111-2125.

DOI: 10.1016/j.engfailanal.2011.07.002

Google Scholar

[5] L. Witek, Crack propagation analysis of mechanically damaged compressor blades subjected to high cycle fatigue, Engineering Failure Analysis, Elsevier 18 (2011) 1223–1232.

DOI: 10.1016/j.engfailanal.2011.03.003

Google Scholar

[6] L.Witek, Fatigue analysis of the compressor blades with v-notches, in: Structural Integrity: Influence of efficiency and green imperatives, Springer, Montreal, 2011, pp.721-734.

DOI: 10.1007/978-94-007-1664-3_57

Google Scholar

[7] L. Witek, Stress intensity factor calculations for the compressor blade with half-elliptical surface crack using Raju-Newman solution, in: Fatigue of Aircraft Structures Monographic Series, Versita, Warsaw, 2011, 153-164.

DOI: 10.2478/v10164-010-0046-2

Google Scholar

[8] L. Witek, M. Orkisz, P. Wygonik et al., Fracture analysis of a turbine casing, Engineering Failure Analysis 18 (2011) 914-923.

DOI: 10.1016/j.engfailanal.2010.11.005

Google Scholar

[9] MSC-PATRAN Users Manual, ver. 2004, MSC Corporation, Los Angeles; 2004.

Google Scholar

[10] ABAQUS Users Manual, ver. 6.9, Abaqus Inc.; 2009.

Google Scholar

[11] M. Yaoming, Three dimensional dual boundary element analysis of crack growth, PhD thesis, Wessex Institute of Technology, Southampton, 1995.

Google Scholar

[12] T.L. Anderson, Fracture mechanics - Fundamentals and applications, CRC Press Inc., Corporate Blvd. Boca Raton, Florida, 1991.

Google Scholar

[13] A. Neimitz, Fracture Mechanics, PWN, Warszawa, 1998.

Google Scholar

[14] P.B Michailov, Sprawocznik po Metaliczeskim Matierialam Turbino- i Motorostroenija, Petersburg, 1961.

Google Scholar

[15] A.A. Lefevre, M. Waaijenberg, E. Aylwin, H. M. Triel, Defect propagation from fatigue loading in 13%Cr pipelines, Journal of Pipeline Engineering 10 (2011) 181-188.

Google Scholar