Preparation and Characterization of Ultra-Fine ZrB2 by Sol-Gel Method

Article Preview

Abstract:

Ultra-fine ZrB2 powders were synthesized by sol-gel carbothermal processing using zirconium oxychloride (ZrOCl2.8H2O), boric acid (H3BO3) and sucrose (C12H22O11) as raw materials. Additionally, mannitol was used as cosolvent to obtain a stable high-concentration ZrB2 sol. Since C12H22O11 can be completely decomposed to carbon, carbon might be accounted precisely for the carbothermal reduction reaction. In the case of C/Zr(mol.)=6.0 and B/Zr(mol.)=3.0, a single phase ZrB2 without residual ZrO2 or ZrC was obtained. The photomicrograph revealed a spheres shape morphology with an uniform size distribution.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

122-125

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc. 90 (5) (2007) 1347-1364.

DOI: 10.1111/j.1551-2916.2007.01583.x

Google Scholar

[2] E.L. Corral , L.S. Walke, Improved ablation resistance of C-C composites using zirconium diboride and boron carbide. J. Eur. Ceram. Soc. 30 (2010) 2357-2364.

DOI: 10.1016/j.jeurceramsoc.2010.02.025

Google Scholar

[3] H.F. Hu, Q.K. Wang, Z.H. Chen, C.R. Zhang, Y.D. Zhang, J. Wang, Preparation and characterization of C/SiC-ZrB2 composites by precursor infiltration and pyrolysis process. Ceram. Int. 36 (2010) 1011-1016.

DOI: 10.1016/j.ceramint.2009.11.015

Google Scholar

[4] S.Q. Guo, Densification of ZrB2-based composites and their mechanical and physical properties: a review, J. Eur. Ceram. Soc. 29 (6) (2009) 995-1011.

Google Scholar

[5] A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, High-strength zirconium diboride-based ceramics, J. Am. Ceram. Soc. 87 (6) (2004) 1170-1172.

DOI: 10.1111/j.1551-2916.2004.01170.x

Google Scholar

[6] S.C. Zhang, G.E. Hilmas, W.G. Fahrenholtz, Pressureless sintering of ZrB2–SiC ceramics, J. Am. Ceram. Soc., 91 (1) (2008) 26-32.

DOI: 10.1111/j.1551-2916.2007.02006.x

Google Scholar

[7] E.Y. Jung, J.H. Kim, S.H. Jung, S.C. Choi, Synthesis of ZrB2 powders by carbothermal and borothermal reduction, J. Alloys Compd. 538 (2012) 164-168.

DOI: 10.1016/j.jallcom.2012.05.076

Google Scholar

[8] N. Setoudeh, N.J. Welham, Formation of zirconium diboride (ZrB2) by room temperature mechanochemical reaction between ZrO2, B2O3 and Mg, J. Alloys and Comp. 420 (2006) 225-228.

DOI: 10.1016/j.jallcom.2005.07.083

Google Scholar

[9] Y. Zhang, R. Li, Y.S. Jiang, B. Zhao, H.P. Duan, J.P. Li , Z.H. Feng, Morphology evolution of ZrB2 nanoparticles synthesized by sol–gel method, J. Solid State Chem. 184 (2011) 2047-(2052).

DOI: 10.1016/j.jssc.2011.05.040

Google Scholar

[10] L.J. Yang, S. Z. Zhu, Q. Xu, Z.Y. Yan, L. Liu, Synthesis of ultrafine ZrB2 powders by sol–gel process, Front. Mater. Sci. China 4(3) (2010) 285-290.

DOI: 10.1007/s11706-010-0094-0

Google Scholar

[11] Y.J. Yan, Z.R. Huang, S.M. Dong, D.L. Jiang, New route to synthesize ultra-fine zirconium diboride powders using inorganic–organic hybrid precursors, J. Am. Ceram. Soc. 89 (11) (2006) 3585-3588.

DOI: 10.1111/j.1551-2916.2006.01269.x

Google Scholar