[1]
M.W. Barsoum, D. Brodkin, T. El-Raghy, Layered Machinable Ceramics for High Temperature Applications, Scripta Mater. 36 (1997) 535-541.
DOI: 10.1016/s1359-6462(96)00418-6
Google Scholar
[2]
M.W. Barsoum, The MN+1AXN Phases: a New Class of Solids; Thermodynamically Stable Nanolaminates, Prog. Solid State Chem. 28 (2000) 201-281.
DOI: 10.1016/s0079-6786(00)00006-6
Google Scholar
[3]
M. Barsoum, K. Buschow, R. Cahn, M. Flemings, B. Ilschner, E. Kramer, S. Mahajan, P. Veyssière, Physical properties of the MAX phases, Encyclopedia of Materials: Science and Technology (2006) 1-11.
DOI: 10.1016/b0-08-043152-6/01863-5
Google Scholar
[4]
W. Jeitschko, H. Nowotny, F. Benesovsky, Kohlenstoffhaltige ternäre Verbindungen (H-phase), Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 94 (4) (1963) 672-676.
DOI: 10.1007/bf00905710
Google Scholar
[5]
M.W. Barsoum, G. Yaroschuk, Fabrication and Characterization of M2SnC (M=Ti, Zr, Hf and Nb), Scripta Mater. 37 (10) (1997) 1583-1591.
DOI: 10.1016/s1359-6462(97)00288-1
Google Scholar
[6]
H.Y. Dong, C.K. Yan, S.Q. Chen, Y.C. Zhou, Solid–liquid reaction synthesis and thermal stability of Ti2SnC powders, J. Mater. Chem. 11 (5) (2001) 1402-1407.
DOI: 10.1039/b008973g
Google Scholar
[7]
Y. Zhou, H. Dong, X. Wang, C. Yan, Preparation of Ti2SnC by solid-liquid reaction synthesis and simultaneous densification method, Mater. Res. Innovations 6 (5-6) (2002) 219-225.
DOI: 10.1007/s10019-002-0200-8
Google Scholar
[8]
S. -B. Li, G. -P. Bei, H. -X. Zhai, Y. Zhou, Synthesis of Ti2SnC from Ti/Sn/TiC powder mixtures by pressureless sintering technique, Mater. Lett. 60 (29-30) (2006) 3530-3532.
DOI: 10.1016/j.matlet.2006.03.045
Google Scholar
[9]
Y.J. Kang, T. Fey, P. Greil, Synthesis of Ti2SnC MAX Phase by Mechanical Activation and Melt Infiltration, Adv. Eng. Mater. 14 (1-2) (2012) 85-91.
DOI: 10.1002/adem.201100186
Google Scholar
[10]
S. -B. Li, G. -P. Bei, H. -X. Zhai, Y. Zhou, C. -W. Li, Synthesis of Ti2SnC at low-temperature using mechanically activated sintering process, Mater. Sci. Eng., A 457 (1-2) (2007) 282-286.
DOI: 10.1016/j.msea.2007.01.095
Google Scholar
[11]
V. Bhosle, E. Baburaj, M. Miranova, K. Salama, Dehydrogenation of TiH2, Mater. Sci. Eng., A 356 (1) (2003) 190-199.
DOI: 10.1016/s0921-5093(03)00117-5
Google Scholar
[12]
Y. Zou, Z. Sun, S. Tada, H. Hashimoto, Rapid synthesis of single-phase Ti3AlC2 through pulse discharge sintering a TiH2/Al/TiC powder mixture, Scripta Mater. 56 (9) (2007) 725-728.
DOI: 10.1016/j.scriptamat.2007.01.026
Google Scholar
[13]
C.L. Yeh, C.W. Kuo, Effects of TiC addition on formation of Ti2SnC by self-propagating combustion of Ti–Sn–C–TiC powder compacts, J. Alloys Compd. 502 (2) (2010) 461-465.
DOI: 10.1016/j.jallcom.2010.04.196
Google Scholar
[14]
S. -B. Li, G. -P. Bei, H. -X. Zhai, Y. Zhou, Bimodal Microstructure and Reaction Mechanism of Ti2SnC Synthesized by a High-Temperature Reaction Using Ti/Sn/C and Ti/Sn/TiC Powder Compacts, J. Am. Cer. Soc. 89 (12) (2006) 3617-3623.
DOI: 10.1111/j.1551-2916.2006.01275.x
Google Scholar