Synthesis and Decomposition of Ti3SiC2 under 1-5GPa at 1400°C

Article Preview

Abstract:

Ternary carbide Ti3SiC2 is a good binder to make superhard composites with diamonds or cubic boron nitride. Superhard composites are normally made at high temperature and under high pressure around 5 GPa to avoid the phase transformation of diamonds or cubic boron nitride. This paper researched the synthesis of Ti3SiC2 from the powders of Ti, Si, and graphite by a cubic presser under 1 GPa to 4 GPa at 1400°C. The decomposition of Ti3SiC2 under 5GPa at 1400°C was also researched. From X-ray diffraction (XRD) and scanning electron microscopy (SEM) results, Ti3SiC2 was synthesized in 30 min under 1 GPa at 1400°C. The impurities were TiSi2, Ti5Si3Cx, and TiC. As the pressure increased from 1GPa to 4GPa, less Ti3SiC2 more TiSi2 was synthesized. Therefore, high presser > 1GPa is unfavorable for the synthesis of Ti3SiC2. After treated under 5GPa at 1400°C, pure Ti3SiC2 was decomposed.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

499-502

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. -B. Li, H. -X. Zhai, Y. Zhou, Z. -L. Zhang, Synthesis of Ti3SiC2 powders by mechanically activated sintering of elemental powders of Ti, Si and C, Mater. Sci. Eng. A, 407 (2005) 315-321.

DOI: 10.1016/j.msea.2005.07.043

Google Scholar

[2] M.W. Barsoum, T. El-Raghy, Synthesis and characterization of a remarkable ceramic: Ti3SiC2, J. Am. Ceram. Soc., 79 (1996) 1953-(1956).

DOI: 10.1111/j.1151-2916.1996.tb08018.x

Google Scholar

[3] M. Radovic, M. Barsoum, T. El-Raghy, J. Seidensticker, S. Wiederhorn, Tensile properties of Ti3SiC2 in the 25-1300°C temperature range, Acta Mater., 48 (2000) 453-459.

DOI: 10.1016/s1359-6454(99)00351-1

Google Scholar

[4] Z. Sun, S. Yang, H. Hashimoto, Ti3SiC2 powder synthesis, Ceram. International, 30 (2004) 1873-1877.

Google Scholar

[5] A.G. Zhou, L. Li, T.C. Su, S.S. Li, Synthesize Ti3SiC2 and Ti3SiC2-Diamond Composites at High Pressure and High Temperature, Key Eng. Mater., 512 (2012) 671-675.

Google Scholar

[6] L. Li, A. Zhou, L. Wang, S. Li, D. Wu, C. Yan, In situ synthesis of cBN–Ti3AlC2 composites by high-pressure and high-temperature technology, Diamond Related Mater., 29 (2012) 8-12.

DOI: 10.1016/j.diamond.2012.07.002

Google Scholar

[7] A. Onodera, H. Hirano, T. Yuasa, N. Gao, Y. Miyamoto, Static compression of Ti3SiC2 to 61 GPa, Appl. Phys. Letter., 74 (1999) 3782-3784.

DOI: 10.1063/1.124178

Google Scholar

[8] M.W. Barsoum, T. El-Raghy, Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2, J. Am. Ceram. Soc., 79 (1996) (1953).

DOI: 10.1111/j.1151-2916.1996.tb08018.x

Google Scholar

[9] Y. Zhou, Z. Sun, Temperature fluctuation/hot pressing synthesis of Ti3SiC2, J. Mater. Sci., 35 (2000) 4343-4346.

Google Scholar

[10] N.F. Gao, Y. Miyamoto, D. Zhang, Dense Ti3SiC2 prepared by reactive HIP, J. Mater. Sci., 34 (1999) 4385-4392.

Google Scholar

[11] J.F. Li, W. Pan, F. Sato, R. Watanabe, Mechanical properties of polycrystalline Ti3SiC2 at ambient and elevated temperatures, Acta Mater., 49 (2001) 937-945.

DOI: 10.1016/s1359-6454(01)00011-8

Google Scholar

[12] N.V. Tzenov, M.W. Barsoum, Synthesis and Characterization of Ti3AlC2, J. Am. Ceram. Soc., 83 (2000) 825-832.

Google Scholar

[13] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-Dimensional Transition Metal Carbides, ACS Nano, 6 (2012) 1322-1331.

DOI: 10.1021/nn204153h

Google Scholar

[14] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Advan. Mater., 23 (2011) 4248-4253.

DOI: 10.1002/adma.201102306

Google Scholar