[1]
S.L. Shu, F. Qiu, B. Xing, S.B. Jin, Y.W. Wang, Q.C. Jiang, Study of effect of Mn addition on the mechanical properties of Ti2AlC/TiAl composites through first principles study and experimental investigation, Intermetallics 28 (2012) 65-70.
DOI: 10.1016/j.intermet.2012.03.053
Google Scholar
[2]
Fritz Appel, Jonathan D.H. Paul, Michael Oehring, Gamma Titanium Aluminide Alloys: Science and Technology, John Wiley & Sons Inc, (2011).
DOI: 10.1002/9783527636204
Google Scholar
[3]
Y.G. Zhang, Y.F. Han, G.L. Chen, J.T. Guo, X.J. Wan, D. Feng, Structural Intermetallics National Defence Industry Press, Beijing, (2001).
Google Scholar
[4]
Y. -W. Kim, Ordered intermetallic alloys, part III: Gamma titanium aluminides, JOM 46 (1994) 30-39.
DOI: 10.1007/bf03220745
Google Scholar
[5]
F. Yang, F.T. Kong, Y.Y. Chen, S.L. Xiao, Effect of spark plasma sintering temperature on the microstructure and mechanical properties of a Ti2AlC/TiAl composite, J. Alloy. Compd. 496 (2010) 462-466.
DOI: 10.1016/j.jallcom.2010.02.077
Google Scholar
[6]
T.T. Ai, Microstructures and mechanical properties of in-situ Al2O3/TiAl composites by exothermic dispersion method, Acta Metall. Sin. (English Letters) 21 (2008) 437-443.
DOI: 10.1016/s1006-7191(09)60006-5
Google Scholar
[7]
M.L. VanMeter, S.L. Kampe, L. Christodoulou, Mechanical properties of near-γ titanium aluminides reinforced with high volume percentages of TiB2, Scripta Mater. 34 (1996) 1251-1256.
DOI: 10.1016/1359-6462(95)00671-0
Google Scholar
[8]
C.L. Yeh, R.F. Shen, Formation of TiAl-Ti5Si3 and TiAl-Al2O3 in situ composites by combustion synthesis, Intermetallics 16 (2008) 64-70.
DOI: 10.1016/j.intermet.2007.07.016
Google Scholar
[9]
J.F. Zhu, W.W. Yang, Y.P. Gong, Fabrication of TiAl/Ti2AlC composite by reaction hot pressing, Applied Mechanics and Materials 52-54 (2011) 842-845.
DOI: 10.4028/www.scientific.net/amm.52-54.842
Google Scholar
[10]
M.W. Barsoum, The Mn+1AXn phases: a new class of solids; thermodynamically stable nanolaminates, Prog. Solid State Ch. 28 (2000) 201-281.
DOI: 10.1016/s0079-6786(00)00006-6
Google Scholar
[11]
X.H. Wang, Y.C. Zhou, Layered machinable and electrically of conductive Ti2AlC and Ti3AlC2 ceramics: a review, J. Mater. Sci. Technol. 26 (2010) 385-416.
DOI: 10.1016/s1005-0302(10)60064-3
Google Scholar
[12]
S.L. Shu, F. Qiu, S.J. Lü, S.B. Jin, Q.C. Jiang, Phase transitions and compression properties of Ti2AlC/TiAl composites fabricated by combustion synthesis reaction, Mat. Sci. Eng. A 539 (2012) 344-348.
DOI: 10.1016/j.msea.2012.01.108
Google Scholar
[13]
T.T. Ai, F. Wang, Thermodynamic analysis and synthetic reaction process of Ti-Al-TiO2 composite, Heat Treatment of Metals (in Chinese), 34 (2009) 85-89.
Google Scholar
[14]
M. Yamaguchi, Y. Umarkoshi, The deformation behavior of intermetallic superlattice compounds, Prog. Mater. Sci. 34 (1990) 1-148.
Google Scholar
[15]
K.S. Chan, Toughening mechanisms in titanium aluminides, Metall. Trans. A 24 (1993) 569-582.
Google Scholar
[16]
K.S. Chan, Y.M. Kim, Relationships of slip morphology, microcracking, and fracture resistance in a lamellar TiAl-alloy, Metall. Mater. Trans. A 259 (1994) 1217-1228.
DOI: 10.1007/bf02652296
Google Scholar
[17]
C.S. Kwai, S.S. Donald, Fatigue and fracture behavior of a fine-grained lamellar TiAl alloy, Metall. Mater. Trans. A 28 (1997) 79-89.
DOI: 10.1007/s11661-997-0084-8
Google Scholar