[1]
F. Agyenim, N. Hewitt, P. Eames, and M. Smyth, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS), Renewable and Sustainable Energy Reviews, vol. 14, no. 2, 2010, p.615.
DOI: 10.1016/j.rser.2009.10.015
Google Scholar
[2]
M. Abolghasemi, A. Keshavarz, and M. A. Mehrabian, Thermodynamic analysis of a thermal storage unit under the influence of nano-particles added to the phase change material and / or the working fluid, Heat and Mass Transfer, vol. 48, issue 11, 2012, p.1961-(1970).
DOI: 10.1007/s00231-012-1039-1
Google Scholar
[3]
L. F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, and A. I. Fernández, Materials used as PCM in thermal energy storage in buildings: A review, Renewable and Sustainable Energy Reviews, vol. 15, no. 3, 2011, p.1675–1695.
DOI: 10.1016/j.rser.2010.11.018
Google Scholar
[4]
E. Rodriguez-Ubinas, L. Ruiz-Valero, S. Vega, and J. Neila, Applications of Phase Change Material in highly energy-efficient houses, Energy and Buildings, vol. 50, 2012, p.49–62.
DOI: 10.1016/j.enbuild.2012.03.018
Google Scholar
[5]
J. Locs, L. Berzina-Cimdina, A. Zhurinsh, and D. Loca, Optimized vacuum/pressure sol impregnation processing of wood for the synthesis of porous, biomorphic SiC ceramics, Journal of the European Ceramic Society, vol. 29, no. 8, 2009, p.1513–1519.
DOI: 10.1016/j.jeurceramsoc.2008.09.013
Google Scholar
[6]
P. Dolado, A. Lazaro, J. M. Marin, and B. Zalba, Characterization of melting and solidification in a real scale PCM-air heat exchanger: Numerical model and experimental validation, Energy Conversion and Management, vol. 52, no. 4, 2011, p.1890–(1907).
DOI: 10.1016/j.enconman.2010.11.017
Google Scholar