[1]
E. Hristoforou, "Magnetostrictive Delay Lines: Engineering Theory and Sensing Applications", Meas. Sci. & Technol., 14, p. R15-R47, (2003)
DOI: 10.1088/0957-0233/14/2/201
Google Scholar
[2]
E. Hristoforou, Magnetic Effects in Physical Sensor Design, J. Opt. Adv. Mat., 4, pp.245-260, (2002)
Google Scholar
[3]
DS Vlachos, DK Fragoulis, JN Avaritsiotis An adaptive neural network topology for degradation compensation of thin film tin oxide gas sensors, Sensors and Actuators B: Chemical, 45, 3, p.223–228, (1997)
DOI: 10.1016/s0925-4005(97)00309-2
Google Scholar
[4]
I. Giouroudi, A. Ktena and E. Hristoforou, Microstructural characterization of cylindrical Fe1-xNix thin films, J. Opt. Adv. Mat., 6, pp.45-50, (2004)
Google Scholar
[5]
CA Papadopoulos, DS Vlachos, Effect of surface catalysts on the long-term performance of reactively sputtered tin and indium oxide gas sensors, Sensors and Actuators B: Chemical 42, 2, p.95–101, (1997)
DOI: 10.1016/s0925-4005(97)00190-1
Google Scholar
[6]
E. Hristoforou and R.E. Reilly, Nonuniformity in Amorphous Ribbon Delay Lines After Stress and Current Annealing, J. Appl. Phys., 69, pp.5008-5010, (1991)
DOI: 10.1063/1.348157
Google Scholar
[7]
E. Hristoforou, H. Chiriac, M. Neagu, I. Darie, Sound Velocity in Magnetostrictive Amorphous Ribbons and Wires, J. Phys. D: Applied Physics, 27, pp.1595-1600, (1994)
DOI: 10.1088/0022-3727/27/8/002
Google Scholar
[8]
E. Hristoforou and D. Niarchos, Fast Characterisation of Magnetostrictive Delay Lines, IEEE Trans. Magn., 29, pp.3147-3149, (1993)
DOI: 10.1109/20.280871
Google Scholar
[9]
H. Hauser, J. Steurer, J. Nicolics, I. Giouroudi. "Wireless Magnetic Field Sensor", Journal of Electrical Engineering, 57, No. 12/S, ISSN 1335-3632, 2006.
Google Scholar
[10]
H. Hauser, I. Giouroudi, L. Musiejovsky, J. Steurer. "Hysteresis Modelling of Giant Magnetoimpedance Thin Films", Sensor Letters, 5, 2007.
DOI: 10.1166/sl.2007.042
Google Scholar
[11]
DM Kepaptsoglou, M. Paluga, M. Deanko, D. Muller, CF Conde, E. Hristoforou, D. Janickovic, P. Svec, Pecularities of nanocrystal formation in rapidly quenched (FeCo)MoCuB amorphous alloys, Journal of Microscopy – Oxford, 223, pp.288-291, (2006)
DOI: 10.1111/j.1365-2818.2006.01656.x
Google Scholar
[12]
DM Kepaptsoglou, P Svec, D Janickovic, E Hristoforou, Evolution of lattice parameter and process rates during nanocrystallization of amorphous Fe-Co-Si-B alloy, Journal of Alloys and Compounds, 434, pp.211-214, (2007)
DOI: 10.1016/j.jallcom.2006.08.171
Google Scholar
[13]
M. Deanko, DM Kepaptsoglou, D. Muller, D. Janickovic, IS Korvanek, E. Hristoforou, P. Svec, Identification and quantification of microstructures formed during nanocrystallization of amorphous (Fe, Co)-Nb-(Si, B) systems, Journal of Microscopy – Oxford, 223, pp.260-263, (2006)
DOI: 10.1111/j.1365-2818.2006.01638.x
Google Scholar
[14]
TJ Papaioannou, P. Svec, D. Janickovic, CS Karagianni, E. Hristoforou, Phase transformations of Co-enhanced Finemet amorphous ribbons based on resistance-temperature measurements, J. Opt. Adv. Mat., 10, pp.1048-1051, (2008)
Google Scholar
[15]
L. Lanotte, G. Ausanio, M. Carbucicchio, V. Iannotti, M. Muller, "Coexistence of very soft magnetism and good magnetoelastic coupling inthe amorphous alloy Fe62.5Co6Ni7.5Zr6Cu1Nb2B15", J. Magn. Magn. Mater., 215, pp.276-279, 2000.
DOI: 10.1016/s0304-8853(00)00133-5
Google Scholar
[16]
G. Ausanio, V. Iannotti, L. Lanotte, M. Carbucicchio, M. Rateo, "Weak stripe domains in Co/Fe multilayers", J. Magn. Magn. Mat., 226, pp.1740-1742, 2001.
DOI: 10.1016/s0304-8853(00)00878-7
Google Scholar
[17]
M Deanko, M Paluga, DM Kepaptsoglou, D Muller, P Mrafko, D Janickovic, E Hristoforou, I Skorvanek, P Svec, Pecularities of electrical resistivity during transformations in amorphous and nanocrystalline alloys, Journal of Alloys and Compounds, 434, pp.248-251, (2007)
DOI: 10.1016/j.jallcom.2006.08.124
Google Scholar
[18]
DM Kepaptsoglou, G. Polychroniadis, KG Efthimiadis, P. Svec, E. Hristoforou, Electron microscopy study of (Fe-Co)-Nb-Si-B alloys, J. Opt. Adv. Mat., 8, pp.1775-1779, (2006)
Google Scholar
[19]
DM Kepaptsoglou, K. Efthimiadis, P. Svec, E. Hristoforou, Magnetotransport studies in (FexCoy)(73)Nb7Si5B15 ribbons, J. Magn. Magn. Mater., 304, pp.583-585, (2006)
DOI: 10.1016/j.jmmm.2006.02.182
Google Scholar
[20]
E. Hristoforou and R.E. Reilly, New Mechanical Stress Transducers Based on Amorphous Alloys, IEEE Trans. Mag., Vol. 26, pp.1563-1565, (1990)
DOI: 10.1109/20.104447
Google Scholar
[21]
E. Hristoforou and R.E. Reilly, A Digitiser Based on Reflections in Delay Lines, J. Appl. Phys., Vol. 70, pp.4577-4580, Mag., 28, p.1974 – 1977, (1992)
Google Scholar
[22]
E. Hristoforou and D. Niarchos, Amorphous Wires in Displacement Sensing Techniques, J. Magn. Magn. Mat., 116, pp.177-188, (1992)
DOI: 10.1016/0304-8853(92)90162-h
Google Scholar
[23]
Hadria Medouer, Mosbah Daamouche, Abderrahim Guittoum, Saci Messaadi, Stefania Haido Karagianni, Key Engineering Materials, 495, p.319, (2012)
DOI: 10.4028/www.scientific.net/kem.495.319
Google Scholar
[24]
M. Daamouche, H. Medouer, A. Guittoum, S. Messaadi, and S. H. Karagianni, Sensor Lett. 11, 4, p.670, (2013)
DOI: 10.1166/sl.2013.2937
Google Scholar
[25]
Saci Messaadi, Mosbah Daamouche, Abderrahim Guittoum, Hadria Medouer, Noureddine Fenineche, Ibtissem Zidani, Key Engineering Materials, 495, pp.1-4, (2012)
DOI: 10.4028/www.scientific.net/kem.495.1
Google Scholar
[26]
Malek J., Kinetic analysis of crystallization processes in amorhous materials. Elsevier. Thermochimica Acta. 355, pp.239-253, (2000)
Google Scholar
[27]
Graydon JW, Thorpe SJ, Kirk DW, Determination of the Avrami exponent for solid state transformations from non isosthermal differential scanning calorimetry, Journal of non crystalline solids, Elsevier, 175(1), pp.31-43, (1994)
DOI: 10.1016/0022-3093(94)90312-3
Google Scholar