Effect of Erbium Doping on Sol-Gel Synthesized Vanadium Pentoxide and Titanium Dioxide Thin Films

Article Preview

Abstract:

Comparative work of erbium doped vanadium pentoxide and titanium dioxide thin films were carried out via sol gel technique by dissolving erbium (III) nitrate pentahydrate in vanadium (V) oxoisopropoxide and titanium (IV) isopropoxide. Fourier Transform IR and thermogravimetric/differential thermal measurements were performed to find out erbium substitution. UV-Vis. spectroscopy indicated a blue shift upon Er doping in V2O5 film due to the softening of V=O bond. The similar behavior was expected in TiO2 film and the prediction shall be shown only if annealing of the film above 600°C, resulting oxygen deficiency in anatase TiO2 while Ti deficiency in rutile TiO2 film. Due to such impact of erbium on structure, granule size of the films, determined by AFM, increased yielding more space for intercalation of ion in host materials and monitored through cyclic voltammetry measurements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

400-403

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.L. Matskevich, V.V. Bazhinov, Optiko Mekhanicheskaia Promyshlennost 44 (1977), p.41.

Google Scholar

[2] N. Savage, B. Chwieroth, A. Ginwalla, B.R. Patton, S.A. Akbar, P.K. Dutta, Sensors and Actuators 79 (2001), p.17.

DOI: 10.1016/s0925-4005(01)00843-7

Google Scholar

[3] C. Natarajan, K. Setoguchi, G. Nogami, Electrochimica Acta Vol. 43, Nos 21 22 (1998), p.3371.

Google Scholar

[4] A. Talledo and C.G. Granqvist, J. Appl. Phys. 77, (1995), p.4655.

Google Scholar

[5] V. Stengl, S. Bakardjieva, N. Murafa, Materials Chemistry and Physics 114 (2009), p.217.

Google Scholar

[6] C. Mignotte, Applied Surface Science 226 (2004), p.355.

Google Scholar

[7] M. Ishii, S. Komuro, T. Morikawa, J. Appl. Phys. 94, (2003), p.3823.

Google Scholar

[8] O. Ozdemir, F.P. Gokdemir, U.D. Menda, P. Kavak, A.E. Saatci, K. Kutlu, AIP Conf. Proc. 1476 (2012), p.233.

Google Scholar

[9] N. Ozer, C.M. Lampert, Thin Solid Films, 349 (1999), p.205.

Google Scholar

[10] Y. Iida, Y. Kanno, Journal of Material Processing Technology 209 (2009), p.2321.

Google Scholar

[11] F. Huguenin, M.J. Giz, E.A. Ticianelli, R.M. Torresi, Journal of Power Sources 103 (2001), p.113.

Google Scholar

[12] Y. Yang, Q. Zhu, A. Jin, W. Chen, Solid State Ionics 179 (2008), p.1250.

Google Scholar

[13] C.V. Ramana, O.M. Hussain, B.S. Naidu, P.J. Reddy, Thin Solid Films 305 (1997), p.219.

Google Scholar

[14] M.B. Sahana, C. Sudakar, C. Thapa, G. Lawes, V.M. Naik, R.J. Baird, G.W. Auner, R. Naik, K.R. Padmanabhan, Materials Science and Engineering B 143 (2007), p.42.

DOI: 10.1016/j.mseb.2007.08.002

Google Scholar

[15] S.H. Lee, H.M. Cheong, M.J. Seong, P. Liu, C.E. Tracy, A. Mascarenhas, J. Roland Pitts, S.K. Deb, Solid State Ionics 165 (2003), p.111.

Google Scholar

[16] Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, K. Koumoto, J. Mater. Chem.13 (2003), p.608.

Google Scholar

[17] R. Parra, M.S. Góes, M.S. Castro, E. Longo, P.R. Bueno, J.A. Varela, Chem. Mater. 2008, 20, p.143.

Google Scholar

[18] A. Verma, G.A. Joshi, Indian Journal of Chemistry A, 48 2 (2009), p.161.

Google Scholar

[19] D.G. Lewis, V.C. Farmer, Clay Minerals (1986) 21, p.93.

Google Scholar

[20] R. Xu, Q. Tao, Y. Yang, C.G. Takoudis, Applied Surface Science Vol. 258 22 (2012), p.8514.

Google Scholar

[21] J.G. Li, X. Wang, C. Tang, T. Ishigaki, S. Tanaka, J. Am. Ceram. Soc., 91 6 (2008), p.2032.

Google Scholar

[22] M.H. Choi, T.Y. Ma, Materials Letters Vol. 62 12–13 (2008), p.1835.

Google Scholar

[24] C.G. Granqvist, "Handbook of Inorganic Electrochromic Materials" (Elsevier, The Netherlands, 1995).

Google Scholar

[25] K.D. Lee, Journal of the Korean Physical Society, Vol. 52 4 (2008), p.1070.

Google Scholar