Stretchable and Wearable Piezoresistive Insole for Continuous Pressure Monitoring

Article Preview

Abstract:

The feedback in the motor relearning therapy is essential and helpful for hemiplegic patient training. Tracking plantar pressure is clinically imperative to evaluate the foot function and in particular to assist patients with musculoskeletal and neurological diseases in the development of normal gait functionality. A flexible piezoresistive insole with dedicated electronics was developed to measure both the pressure distribution under 64 nodes arranged in the main plantar regions and the mean plantar pressure during walking activity with a sampling frequency of 20 Hz. This study reports on the easy and cost effective approach used to fabricate the flexible insole based on a piezoresistive material composed by copper spiky microparticles dispersed into silicon rubber. The entire insole was fabricated by single step casting technique, and then completed with a patterned metalized polyimide films as bottom electrode, while the top electrode was directly sputtered on the sample.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

474-477

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.E. Morris, F. Huxham, J. McGinley, K. Dodd, R. Iansek, Clin. Biomech. Vol.16 (2001), p.459

Google Scholar

[2] S.R. Edgar, T. Swyka, G. Fulk, E.S. Sazonov, Wearable Shoe-Based Device for Rehabilitation of Stroke Patients, in, Proceeding of 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Buenos Aires, Argentina, 2010, p.3772.

DOI: 10.1109/iembs.2010.5627577

Google Scholar

[3] D.J. Margolis, J. Knauss, W. Bilker, M. Baumgarten, Age Ageing Vol.32 (2003), p.259

Google Scholar

[4] A.H. Razak, A. Zayegh, R.K. Begg, Y. Wahab, Sensors Vol.12 (2012), p.9884

Google Scholar

[5] Information on http://www.novel.de/novelcontent/pedar

Google Scholar

[6] Information on http://www.tekscan.com/Pressure-distribution

Google Scholar

[7] B. Sümer, B. Aksak, K. Şahin, K. Chuengsatiansup, M. Sitti, Sensor Letters Vol.9 (2011), p.457

Google Scholar

[8] G. Canavese, M. Lombardi, S. Stassi, C.F. Pirri, Appl. Mech. Mater. Vol.10 (2012), p.110

Google Scholar

[9] G. Canavese, S. Stassi, M. Stralla, C. Bignardi, C.F. Pirri, Sens. Actuat. A, Phys. Vol.186 (2012), p.191

Google Scholar

[10] S. Stassi, G. Canavese, V. Cauda, S.L. Marasso, C.F. Pirri, Nanoscale Research Letters Vol.7 (2012), p.327

Google Scholar

[11] B.G. Han, B.Z. Han, X. Yu, J.P. Ou, Sensor Letters Vol.7 (2009), p.1044

Google Scholar

[12] M. Lu, D. Lee, T. Yeom, T. Cui, Sensor Letters Vol.8 (2010), p.639

Google Scholar

[13] S. Stassi, G. Canavese, J. Polym. Sci. Part B: Polym. Phys. Vol.50 (2012), p.984

Google Scholar

[14] S. Stassi, V. Cauda, G. Canavese, D. Manfredi, C.F. Pirri, Eur. J. Inorg. Chem. Vol.5 (2012), p.2669

Google Scholar

[15] S. Stassi, G. Canavese, F. Cosiansi, R. Gazia, M. Cocuzza, Procedia Eng. Vol.47 (2012), p.659

DOI: 10.1016/j.proeng.2012.09.233

Google Scholar