Computational Modeling and Optimization of a Magnetic Shielding Cabinet

Article Preview

Abstract:

Magnetic shielding is used to offer protection from stray magnetic fields to devices sensitive to magnetic noise. The Finite element method has been used in order to simulate the magnetic shielding effect of such a chamber in the geomagnetic field. Different designs for the cabinet have been considered and simulated in a static magnetic field of the same magnitude, as geomagnetic field, generated by a cylindrical coil. Several types of materials with different material properties have been simulated, such as high permeable mumetal and conductive aluminum, for the chamber itself, copper for the coil and air as the medium in which the magnetic field is propagating. The influence of geometrical and material properties parameters, like the thickness and the permeability of the ferromagnetic alloy, in the effectiveness of the shielding has been investigated using optimization techniques available in the design optimization module existing in the ANSYS v 14.0 ® finite element analysis software.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

617-620

Citation:

Online since:

April 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] DS Vlachos, DK Fragoulis, JN Avaritsiotis An adaptive neural network topology for degradation compensation of thin film tin oxide gas sensors, Sensors and Actuators B: Chemical, 45, 3, p.223–228, (1997)

DOI: 10.1016/s0925-4005(97)00309-2

Google Scholar

[2] CA Papadopoulos, DS Vlachos, Effect of surface catalysts on the long-term performance of reactively sputtered tin and indium oxide gas sensors, Sensors and Actuators B: Chemical 42, 2, p.95–101, (1997)

DOI: 10.1016/s0925-4005(97)00190-1

Google Scholar

[3] I. Giouroudi, A. Ktena and E. Hristoforou, Microstructural characterization of cylindrical Fe1-xNix thin films, J. Opt. Adv. Mat., 6, pp.45-50, (2004)

Google Scholar

[4] E. Hristoforou, A. Ktena, Magnetostriction and magnetostrictive materials for sensing applications, J. Magn. Magn. Mater., 316, pp.372-378, (2007)

DOI: 10.1016/j.jmmm.2007.03.025

Google Scholar

[5] E. Hristoforou, H. Chiriac, M. Neagu, A New Magnetic Field Sensor Based on Magnetostrictive Delay Lines, IEEE Trans. Instr. & Meas., 46, pp.632-635, (1997)

DOI: 10.1109/19.571942

Google Scholar

[6] E. Hristoforou and D. Niarchos, Mechanical Sensors Based on Re-Entrant Flux Reversal, IEEE Trans. Mag., 28, pp.2190-2192, (1992)

DOI: 10.1109/20.179439

Google Scholar

[7] P. D. Dimitropoulos, J. N. Avaritsiotis and E. Hristoforou, A novel micro-Fluxgate sensor based on the AMR effect of ferromagnetic film-resistors, Sensors and Actuators A, 107, pp.238-247, (2003)

DOI: 10.1016/s0924-4247(03)00378-9

Google Scholar

[8] P. Dimitropoulos, J.N. Avaritsiotis, E. Hristoforou, Boosting the Performance of Miniature Fluxgates With Novel Signal Extraction Techniques, Sensors and Actuators A, 90, pp.56-72, (2001)

DOI: 10.1016/s0924-4247(01)00452-6

Google Scholar

[9] C. Petridis, I Petrou, PD Dimitropoulos, E Hristoforou, Determining appropriate magnetic core properties for a new type of flux-gate like sensor, Sensor Letters, 5, pp.98-101, (2007)

DOI: 10.1166/sl.2007.072

Google Scholar

[10] B. Dufay, S. Saez, C. Cordier, C. Dolabdjian, C. Dubuc, E. Hristoforou, S. Ubizskii, 2D hybrid yttrium iron garnet magnetic sensor noise characterization, IEEE Sensors Journal (12), art. 5873114, pp.3211-3215, (2011)

DOI: 10.1109/jsen.2011.2159372

Google Scholar

[11] E. Hristoforou, H. Hauser and PD Dimitropoulos, On a New Principle of Smart Multi-Sensor Based on Magnetic Effects, IEEE Sensors, 6, pp.372-379, (2006)

DOI: 10.1109/jsen.2005.859781

Google Scholar

[12] E. Hristoforou, New monolithic three dimensional field sensors with high sensitivity, J. Opt. Adv. Mat., 8, pp.1691-1697, (2006)

Google Scholar

[13] C. Petridis, A. Ktena, E. Laskaris, PD Dimitropoulos, E Hristoforou, Ni-Fe thin film coated Cu wires for field sensing applications, Sensor Letters, 5, pp.93-97, (2007)

DOI: 10.1166/sl.2007.071

Google Scholar

[16] CA Papadopoulos, DS Vlachos, Effect of surface catalysts on the long-term performance of reactively sputtered tin and indium oxide gas sensors, Sensors and Actuators B: Chemical, 42, 2, p.95–101, (1997)

DOI: 10.1016/s0925-4005(97)00190-1

Google Scholar

[17] PD Skafidas, DS Vlachos, JN Avaritsiotis, Modelling and simulation of tin oxide based thick-film gas sensors using Monte Carlo techniques, - Sensors and Actuators B: Chemical, 19, 1–3, p.724–728, (1994)

DOI: 10.1016/0925-4005(93)01222-p

Google Scholar

[16] I Petrou, P Skafidas, E Hristoforou, Electronic toll and road traffic monitoring system using 3-D field AMR sensors, Sensor Letters, 11, pp.91-95, (2013)

DOI: 10.1166/sl.2013.2787

Google Scholar

[17] P.D. Dimitropoulos, G.I. Stamoulis, E. Hristoforou, A 3-d hybrid Jiles-Atherton/Stoner-Wohlfarth magnetic hysteresis model for inductive sensors and actuators, IEEE Sensors Journal, 6, pp.721-736, (2006)

DOI: 10.1109/jsen.2006.874454

Google Scholar

[18] O. Bottauscio, M. Chiampi, G. Crotti, M. Zucca, Measurement accuracy in shielded magnetic fields, Journal of Magnetism and Magnetic Materials, Torino, (2004)

DOI: 10.1016/j.jmmm.2004.11.429

Google Scholar

[19] Wan-Seop Kim, Yoon Bae Kim, Mun-Seog Kim, Kyu-Tae Kim, Yonuk Chong, Po Gyu Park, Young Gyun Kim, Optimizing the shielding effectiveness of a shielding cabinet via FEM simulation, Journal of Magnetism and Magnetic Materials, (2007)

DOI: 10.1016/j.jmmm.2007.03.123

Google Scholar

[20] P. Sergeant, L. Dupre, J. Melkebeek, L. Vandenbossche, Magnetic field computation for optimized shielding of induction heaters, Journal of Computational and Applied Mathematics, (2003)

DOI: 10.1016/j.cam.2003.12.006

Google Scholar

[21] Helmut Soltner, Ulrich Pabst, Michael Butzek, Michael Ohl, Tadeusz Kozielewski, Michael Monkenbusch, Don Sokol, LarryMaltin, Eric Lindgren, Stuart Koche, David Fugate, Design, construction, and performance of a magnetically shielded room for a neutron spin echo spectrometer, Nuclear Instruments and Methods in Physics Research A, (2011)

DOI: 10.1016/j.nima.2011.01.094

Google Scholar

[22] M.V.K. Chari, S.J. Salon, Numerical Methods in Electromagnetism, Academic Press, San Diego, (2000)

Google Scholar