[1]
I. Giouroudi, A. Ktena and E. Hristoforou, Microstructural characterization of cylindrical Fe1-xNix thin films, J. Opt. Adv. Mat., 6, pp.45-50, (2004)
Google Scholar
[2]
I. Youroudi, C. Orfanidou and E. Hristoforou, Circumferentially oriented Ni cylindrical thin films for torque sensor applications, Sensors and Actuators A, 106, pp.179-182, (2003)
DOI: 10.1016/s0924-4247(03)00161-4
Google Scholar
[3]
E. Hristoforou, "Magnetostrictive Delay Lines: Engineering Theory and Sensing Applications", Meas. Sci. & Technol., 14, p. R15-R47, (2003)
DOI: 10.1088/0957-0233/14/2/201
Google Scholar
[4]
E. Hristoforou, Magnetic Effects in Physical Sensor Design, J. Opt. Adv. Mat., 4, pp.245-260, (2002)
Google Scholar
[5]
AG Mamalis, E. Hristoforou, DE Manolakos, T Prikhna, I Theodorakopoulos, G Kouzilos, Explosively Consolidated Powder-In-Tube MgB2 Superconductor Aided by Post-Thermal Treatment, IEEE Trans. on Applied Superconductivity, 19, pp.20-27, (2009)
DOI: 10.1109/tasc.2008.2009124
Google Scholar
[6]
ND Papadopoulos, HS Karayianni, PE Tsakiridis, M. Perraki, E. Hristoforou, Cyclodextrin inclusion complexes as novel MOCVD precursors for potential cobalt oxide deposition, Applied Organometallic Chemistry, 24, pp.112-121, (2010)
DOI: 10.1002/aoc.1588
Google Scholar
[7]
ND Papadopoulos, E. Ellekova, HS Karayanni, E. Hristoforou, Synthesis and characterization of cobalt precursors for the growth of magnetic thin films by the MOCVD method, J. Opt. Adv. Mat., 10, pp.1098-1102, (2008)
Google Scholar
[8]
N. Papadopoulos, C.S. Karayianni, P. Tsakiridis, E. Sarantopoulou, E. Hristoforou, Effects of MOCVD thin cobalt films' structure and surface characteristics on their magnetic behavior, Chemical Vapor Deposition, 17, pp.211-220, (2011)
DOI: 10.1002/cvde.201106907
Google Scholar
[9]
ND Papadopoulos, HS Karayianni, PE Tsakiridis, M. Perraki, E. Sarantopoulou, E. Hristoforou, MOCVD Cobalt Oxide Deposition from Inclusion Complexes: Decomposition Mechanism, Structure, and Properties, Journal of the Electrochemical Society, 158, pp.5-13, (2011)
DOI: 10.1149/1.3509698
Google Scholar
[10]
H.W. Meyer Jr, D.S. Kleponis, Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration, International Journal of Impact Engineering, 26, pp.509-521, (2001)
DOI: 10.1016/s0734-743x(01)00107-5
Google Scholar
[11]
I. Weiss, S.L. Semiatin, Thermomechanical processing of alpha titanium alloys—an overview, Materials Science and Engineering: A, 263, pp.243-256, (1999)
DOI: 10.1016/s0921-5093(98)01155-1
Google Scholar
[12]
Z. Guo, S. Malinov, W. Sha, Modelling beta transus temperature of titanium alloys using artificial neural network, Computational Materials Science, 32, pp.1-12, (2005)
DOI: 10.1016/j.commatsci.2004.05.004
Google Scholar