Fabrication of Diamond Based Quartz Crystal Microbalance Gas Sensor

Article Preview

Abstract:

Synthetic diamond has remarkable properties comparable with natural diamond and hence is a very promising material for many various applications (sensors, heat sink, optical mirrors, cold cathode, tissue engineering, etc.). Nowadays, deposition of diamond films is normally employed in chemical vapor deposition (CVD) usually at high temperatures (800900 °C), what limit its application to high melting substrates. Gravimetric (mass) sensors belong to the major categories of chemical sensors and the most common type of mass sensor is the bulk acoustic quartz crystal microbalance (QCM). This contribution deals with a nanocrystalline diamond (NCD) growth from the H2/CH4/CO2 gas mixture at low temperature (400 °C) by pulsed linear antenna microwave plasma system on 10 MHz circular AT-cut quartz resonators substrate. Gas sensor based on the NCD-coated QCM was developed for detection of ammonia (NH3) at room temperature. Measurements not only confirmed the functionality of this first published NCD-coated QCM sensor, but in addition its sensitivity was twofold to a virgin QCM sensor with a gold active layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

589-592

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Matsuguchi, Y. Kadowaki, K. Noda, R. Naganawa: Sens. Actuat. B 120, (2007), 462–466

Google Scholar

[2] A. Helwig G. Muller, J.A. Garrido, M. Eickhoff: Sens. Actuat. B 133, (2008), pp.156-165

Google Scholar

[3] A. Kromka, M. Davydova, B. Rezek et al: Diam. Relat. Mater. 19, (2010), pp.196-200

Google Scholar

[4] S. K. Vashist, P. Vashist: Journal of Sensors 2011, (2011), pp.1-13

Google Scholar

[5] B. Wyszynski, P. Somboon, T. Nakamoto: Sens. Actuat. B 121, (2007), pp.538-544

Google Scholar

[6] Y. K. Yuan, X. L. Xiao, Y. S. Wang et al: Sens. Actuat. B 145, (2010), p.348–354

Google Scholar

[7] G. J. Price, A.A. Clifton, V. J. Burton, T. C. Hunter: Sens. Actuat. B 84, (2002), p.208–213

Google Scholar

[8] http://www.ametekpi.com/index.aspx

Google Scholar

[9] P.J. Gielisse, V.I. Ivanov-Omskii et al: (Technomic Pub Co., Inc., Lancaster, 1998)

Google Scholar

[10] M. Davydova, M. Stuchlik, B. Rezek, K. Larsson, A. Kromka: Sens. Actuat. B (2013), in press, doi: /dx.doi.org/

DOI: 10.1016/j.snb.2013.07.079

Google Scholar

[11] M. Varga, T. Izak, A. Kromka et al: Cent. Europ. Jour. of Phys. 10 (1), (2012), p.218–224

Google Scholar

[12] A. Kromka, O. Babchenko, T. Izak, S. Potocky, M. Davydova et al: In the proceeding "3rd International Conference on NANOCON, Brno, Czech Republic, (2011), pp.271-279

Google Scholar

[13] T. Izak, O. Babchenko, M. Varga et al: Phys. Stat. sol. B 249, (2012), p.2600–2603

Google Scholar

[14] A. Kromka, O. Babchenko, T. Izak, K. Hruska et al: Vacuum 86 (6), (2012), pp.776-779

DOI: 10.1016/j.vacuum.2011.07.008

Google Scholar

[15] A.C. Ferrari: Mat. Res. Soc. Symp. Proc. 675, (2001), Mat. Res. Soc., W11.5.1-12

Google Scholar

[16] M. Varga, Z. Remes, O. Babchenko et al: Phys. Stat. Sol. B 249 (12), (2012), pp.2635-2639

Google Scholar

[17] X. Wang, J. Zhang, Z. Zhu: Applied Surface Science 252 (6), (2006), pp.2404-2411

Google Scholar