[1]
Ghicov A., Macak J. M., Tsuchiya H., et al. Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes, Nano Lett., 6 (2006) 1080-1082.
DOI: 10.1021/nl0600979
Google Scholar
[2]
Zhang F. J., Chen M. L., and Oh W. C. Photoelectrocatalytic properties of Ag-CNT / TiO2 composite electrodes for methylene blue degradation, New Carbon Materials, 25 (2010) 348-356.
DOI: 10.1016/s1872-5805(09)60038-x
Google Scholar
[3]
Lees A. C., Kleverlaan C. J., Bignozzi C. A., et al., Photophysical properties of TiO2 surfaces modified with dinuclear Ru and RuOs polypyridyl complexes, Inorg. Chem. 40 (2001) 5343-5349.
DOI: 10.1021/ic0102743
Google Scholar
[4]
Gong J Y, Pu W H, Yang C Z, et al. A simple electrochemical oxidation method to prepare highly ordered Cr-doped titania nanotube arrays with promoted photoelectrochemical property. Electrochimica Acta, 2012, 68: 178~183.
DOI: 10.1016/j.electacta.2012.02.049
Google Scholar
[5]
Batzill M., Hebenstreit E. L.D., Hebenstreit W., et al., Influence of subsurface, charged impurities on the adsorption of chlorine at TiO2, Chem. Phys. Lett. 367 (2003)319-323.
DOI: 10.1016/s0009-2614(02)01635-4
Google Scholar
[6]
Hippe C., Wark M. , Lork E., et al., Platinum-filled oxide nanotubes, Microporous Mesoporous Mater 31(1999) 235-241.
DOI: 10.1016/s1387-1811(99)90074-4
Google Scholar
[7]
Li X., Finnis M.W., He J., et al., Evaluation of Correction Schemes for Charged Point Defects in Rutile TiO2 Calculated by Density Functional Theory, Acta Mater. 57 (2009)5882-5891.
DOI: 10.1016/j.actamat.2009.08.014
Google Scholar
[8]
Hou X.G., Liu A.D., Huang M. D., Liao B. and Wu X.L., (2009)Chinese Phys. Lett., 26: 077106.
Google Scholar
[9]
X. Y. Wu, B. Liao, H. Liang, X. Zhang and A. D. Liu, Theoretic and experimental studies on Titania nanotube doped with Ag metal ions, Chin. J. Struct. Chem., 9(2011) 1332-1334.
Google Scholar
[10]
Li J. L., Chen W. Z., Bi J. J., et al., Synthesis of Ag-TiO2 nanotubes in ambient atmosphere and kinetics of photocatalytic reaction, Chin. J. Sens. Actuators. 23(2010) 617-620.
Google Scholar
[11]
Shockley W., Read W.T., Jr., Statistics of the recombinations of holes and electrons, Phys. Rev. 87(1952)835-842.
DOI: 10.1103/physrev.87.835
Google Scholar
[12]
Hall R.N., Electron-Hole Recombination in Germanium, Phys. Rev. 87 (1952)387.
Google Scholar
[13]
Kronik L., Shapira Y. Surface photovoltage phenomena: theory, experiment, and applications, Surf. Sci. Rep., 37: (1999)1-206.
Google Scholar
[14]
Zhang F. X, Pi Y., Cui J., et al. Unexpected selective photocatalytic reduction of nitrite to nitrogen on silver-doped titanium dioxide. J. Phys. Chem. C., , 111(2007)3756-3761.
DOI: 10.1021/jp067807j
Google Scholar
[15]
Lin W. C., Chen C. N., Tseng T. T., et al. Micellar layer-by-layer synthesis of TiO2/Ag hybrid particles for bactericidal and photocatalytic activities. J. Euro. Ceramic. Soc., 30( 2010)2849-2857.
DOI: 10.1016/j.jeurceramsoc.2009.12.016
Google Scholar
[16]
Su W., Wei S S, Hu S Q, et al. Preparation of TiO2/Ag colloids with ultraviolet resistance and antibacterial property using short chain polyethylene glycol. J. Hazardous Mater., 172(2009)716-720.
DOI: 10.1016/j.jhazmat.2009.07.056
Google Scholar