Embedded Seal Cavity Fabricated in HTCC MEMS Technology

Article Preview

Abstract:

This article presents a design and fabrication method of a embedded cavity using alumina casting-belt. This method is based on HTCC (high-temperature co-fired ceramic) MEMS technology with using fugitive materials. The test structures are fabricated using two different fugitive materialsPolyimide film and ESL4900 film and two different lamination pressures (15MPa and 21MPa). The final stack was sintered by selecting different temperature process parameters in the high-temperature sintering process. Complete the analysis of the sample cavity structure using a SEM (scanning electron microscope). The manufacturing method is available for structural integrity and good air tightness of ceramics sealed cavity and it will be applied to the fabrication of flow sensors, capacitance pressure sensors etc.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

461-467

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. H Zhong, M. Q Yi, H. H Bau, Magneto hydrodynamic (MHD) pump fabricated with ceramic tapes, Sens. Actuators, A. 96 (2002) 59-66.

DOI: 10.1016/s0924-4247(01)00764-6

Google Scholar

[2] M. Gongora-Rubioa, L.M. Solá-Lagunab, P.J. Moffettb, J.J. Santiago-Avilésc, The utilization of low temperature co-fired ceramics (LTCC-ML) technology for meso-scale EMS, a simple thermistor flow sensor. Sens. Actuators, A. 73 (1999) 215-221.

DOI: 10.1016/s0924-4247(98)00238-6

Google Scholar

[3] M. Q Yi,  H.H. Bau, The kinematics of bend-induced in micro-conduits, Int J Heat Fluid Flow. 24 (2003) 645-656.

DOI: 10.1016/s0142-727x(03)00026-2

Google Scholar

[4] M. Karol, P. Dorota, G. Leszek, T. Wladyslaw, LTCC enzymatic microreactor, Microelectron Electron Packaging. 4 (2007) 51-56.

Google Scholar

[5] D. Sadler, R. Changrani, P. Roberts, C. Chou, F. Zenhausern, Thermal management of BioMEMS: temperature control for ceramic-based PCR and DNA detection devices, IEEE Trans Compon Packaging Technol. 26 (2003) 309-316.

DOI: 10.1109/tcapt.2003.815093

Google Scholar

[6] H. Stetson, Mulilayer Ceramic Technology, Ceram Civil. 3 (1987) 307-322.

Google Scholar

[7] B. Schwartz. Microelectronics Packaging. Am. Ceram. Soc. Bull. 63 (1984) 577-581.

Google Scholar

[8] P. Epsinoza-Vallejos, J. H. Zhong, M. R. Gongora-Rubio, L. Sola-laguna, and J. J. Santiago-Aviles, Meso(intermediate)-scale electromechanical systems for the measurement and control of sagging in LTCC structures. Mater Res Soc Symp Proc. 518 (1998).

DOI: 10.1557/proc-518-73

Google Scholar

[9] M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, and J. J. Santiago-Aviles, Overviewof lowtemperature co-fired ceramics tape technology for meso-system technology (MsST). Sens. Actuators, A. 89 (2001) 222–241.

DOI: 10.1016/s0924-4247(00)00554-9

Google Scholar

[10] H. Birol, T. Maeder, and P. Ryser, Processing of graphite-based sacrificiallayer for microfabrication of low temperature co-fired ceramics (LTCC). Sens. Actuators, A. 130 (2006) 560-567.

DOI: 10.1016/j.sna.2005.12.009

Google Scholar