Preparation and Antibacterial Bioactivity of Ti-Base Titania Nanotube Arrays

Article Preview

Abstract:

A vertically aligned bioactivity titania nanotube arrays was fabricated on the surface of titanium substrate by anodization. The nanotubes were then treated with optical deposition of silver to make them antibacterial, and to inhibition growth of bacterial in the antibacterial test in vitro. It is shown that the present of silver particle inhibition the growth staphylococcus aureus. Such bioactivity titania nanotube arrays and associated hollow tube structure can be useful as a well-adhered antibacterial bioactive surface layer on titanium implant metals for orthopaedic and dental implants.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

435-441

Citation:

Online since:

April 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Black J, Hasting G, editors. Handbook of biomaterial properties, London: Chapman & Hall, (1998).

Google Scholar

[2] Ratner B D, Hoffman A S, Schoen F J, Lemons JE. Biomaterials science, San Diego, CA: Academic Press, (1996).

Google Scholar

[3] Ruys A J, Brandwood A, Milthorpe B K, Dickson M R, Zeigler K A, Sorrell C C. The effect of sintering atmosphere on the chemical compatibility of hydroxyapatite and particulate additives at 1200℃. J Mater Sci, 6(1995)297–301.

DOI: 10.1007/bf00120274

Google Scholar

[4] Hench LL. Bioceramics. J Am Ceram Soc, 81(1998)1705–1728.

Google Scholar

[5] Browne M, Gregson P J. Metal ion release from wear particles produced by Ti-6Al-4V and Co-Cr alloy surfaces articulatingagainst bone. Mater Lett, 24 (1995)1–6.

DOI: 10.1016/0167-577x(95)00082-8

Google Scholar

[6] Quek C H, Khor K A, Cheang P. Influence of processing parameters in plasma spraying of hydroxyapatite/Ti-6Al-4V composite coatings. J Mater Procedure Tech, 89–90(1999)550–555.

DOI: 10.1016/s0924-0136(99)00062-x

Google Scholar

[7] Lee T M , Chang E, Wang B C, Yang C Y. Characteristics of plasma-sprayed bioactive glass coatings on Ti-6Al-4V alloy: an in vitro study. Surf Coatings Tech, 79(1996)170–177.

DOI: 10.1016/0257-8972(95)02463-8

Google Scholar

[8] Ishizawa H, Ogino M. Formation and charaterization of anodic titanium oxide films containing Ca and P. J Biomed Mater Res, 34(1997)15–20.

Google Scholar

[9] Feng B, Chen J, Zhang X D. Surface modification of titanium by acid-etching. In: Zhang X D, Ikada Y, editors. Biomedical Materials Research in Asian (IV). Kyoto, Japan: Kobunshi Kankokai, (2000).

Google Scholar

[10] Tengvall P, Elwing H, Lundstrom I. Titanium gel made from metallic titanium and hydrogen peroxide. J Colloid Inter Sci , 130(1989)405–13.

DOI: 10.1016/0021-9797(89)90117-3

Google Scholar

[11] Li P, Ohtsuki C, Kokubo T, Nankanishi K, Soga N, de Groot K. The role of hadrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res, 28(1994)7–15.

DOI: 10.1002/jbm.820280103

Google Scholar

[12] Peltola T, Patsi M, Rahiala H, Kangasniemi I, Yli-Urpo A. Calcium phosphate induction by sol-gel-derived titania coating in titanium substrates in vitro. J Biomed Mater Res, 41(1998): 504–10.

DOI: 10.1002/(sici)1097-4636(19980905)41:3<504::aid-jbm22>3.0.co;2-g

Google Scholar

[13] Kim H M, Miyaji F, Kokubo T, Nakamura T. Bonding strength of bonelike apatite layer to Ti metal substrate. J Biomed Mater Res, 38(1997)121–7.

DOI: 10.1002/(sici)1097-4636(199722)38:2<121::aid-jbm6>3.0.co;2-s

Google Scholar

[14] Branemark P I.  Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period, Scand J Plast Reconstr Surg., suppl 16(1977)1-132.

Google Scholar

[15] Babelon P, Dequiedt A S, Moste'fa-Sba H, Bourgeois S, Sibillot P, Sacilotti M. SEM and XPS studies of titanium dioxide thin films grown by MOCVD, Thin Solid Films,. 322(1998)63- 67.

DOI: 10.1016/s0040-6090(97)00958-9

Google Scholar

[16] Thybo S, Jensen S, Johansen J, Johannessen T, Hansen O, Quaade U J. Flame spray deposition of porous catalysts on surfaces and in Microsystems, J Catal, 223(2004)271-277.

DOI: 10.1016/j.jcat.2004.01.027

Google Scholar

[17] Dinh N N, Oanh N T T, Long P D, Bernard M C, Goff A H. Electrochromic properties of TiO2 anatase thin films prepared by a dipping sol-gel method , Thin Solid Films, 423(2003) 70-76.

DOI: 10.1016/s0040-6090(02)00948-3

Google Scholar

[18] Lee C, Choi H, Lee C, Kim H. Photocatalytic properties of nano-structured TiO2 plasma sprayed coating, Surface Coat Technol, 173(2003)192-200.

DOI: 10.1016/s0257-8972(03)00509-7

Google Scholar

[19] Sumita T, Yamaki T, Yamamoto S, Miyashita A. Photo-induced surface charge separation in Cr-implanted TiO2 thin films, Thin Solid Films , 416(2002)80–84.

DOI: 10.1016/s0040-6090(02)00618-1

Google Scholar

[20] Ohsaki H, Tachibana Y, Mitsui A, Kamiyama T, Hayashi Y. High rate deposition of TiO2 by DC sputtering of the TiO2-x target, Thin Solid Films, 392(2001)169-173.

DOI: 10.1016/s0040-6090(01)01023-9

Google Scholar

[21] Tian T, Xiufeng X, Houde S, Rongfang L. Biomimetic growth of apatite on titania nanotube arrays fabricated by titanium anodization in NH4F/H2SO4 electrolyte, Materials Science-Poland, 26( 2008)487-494.

Google Scholar

[22] Xiufeng X, Rongfang L, Tian T. Preparation of Bioactive titania nanotube arrays in HF/Na2HPO4 electrolyte, Journal of Alloys and Compounds , 466(2008)356-362.

DOI: 10.1016/j.jallcom.2007.11.032

Google Scholar

[23] Z. Ruszczak,W. Friess, Collagen as a carrier for on-site delivery of antibacterial drugs, Adv. Drug Deliver. Rev. 55 (2003) 1679–1698.

DOI: 10.1016/j.addr.2003.08.007

Google Scholar

[24] Morra M, Cassinelli C., Cascardo G., Carpi A., Fini M., Giavaresi G., Giardino R., Adsorption of cationic antibacterial on collagen-coated titanium implant devices, Biomed. Pharmacother, 58 (2004) 418–422.

DOI: 10.1016/s0753-3322(04)00112-x

Google Scholar

[25] Jeon H.J., Yi S.C., Oh S.G., Preparation and antibacterial effects of Ag–SiO2 thin films by sol–gel method, Biomaterials 24 (2003) 4921–4928.

DOI: 10.1016/s0142-9612(03)00415-0

Google Scholar

[26] Klasen H.J., Historical review of the use of silver in the treatment of burns. I. Early uses, Burns 26 (2000) 117–130.

DOI: 10.1016/s0305-4179(99)00108-4

Google Scholar

[27] Yorganci K., Krepel C., Weigelt J.A., Edmiston C.E., In vitro evaluation of the antibacterial activity of three different central venous catheters against grampositive bacteria, Eur. J. Clin. Microbiol. Infect. Dis. 21 (2002) 379–384.

DOI: 10.1007/s00134-002-1243-4

Google Scholar

[28] Barrere F, van Blitterswijk CA, de Groot K, Layrolle P. Biomaterials 23(2002)(1921).

DOI: 10.1016/s0142-9612(01)00318-0

Google Scholar

[29] Kawashita M., Tsuneyama S., Miyaji S., Kokubo T., Kozuka H., Yamamoto K., Antibacterial silver-containing silica glass prepared by sol–gel method, Biomaterials , 21 (2000) 393–398.

DOI: 10.1016/s0142-9612(99)00201-x

Google Scholar

[30] Alt V., Bechert T., Steinrucke P., Wagener M., Seidel P., Dingeldein E., An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement, Biomaterials 25 (2004) 4383-4391.

DOI: 10.1016/j.biomaterials.2003.10.078

Google Scholar

[31] Feng Q.L., Kim T.N., Wu J., Park E.S., Kim J.O., Lim D.Y., Cui F.Z., Ag-HAp thin film on alumina substrate and its antibacterial effects, Thin Solid Films, 335 (1998) 214–219.

DOI: 10.1016/s0040-6090(98)00956-0

Google Scholar