[1]
Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.
DOI: 10.1038/nature01937
Google Scholar
[2]
Veronis G, Fan S. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides[J]. Applied Physics Letters, 2005, 87(13): 131102-131102-3.
DOI: 10.1063/1.2056594
Google Scholar
[3]
Wang T B, Wen X W, Yin C P, et al. The transmission characteristics of surface plasmon polaritons in ring resonator[J]. Opt. Express, 2009, 17(26): 24096-24101.
DOI: 10.1364/oe.17.024096
Google Scholar
[4]
Lee T W, Gray S K. Subwavelength light bending by metal slit structures[J]. Opt. Express, 2005, 13(24): 9652-9659.
DOI: 10.1364/opex.13.009652
Google Scholar
[5]
Gao H, Shi H, Wang C, et al. Surface plasmon polariton propagation and combination in Y-shaped metallic channels[J]. Optics Express, 2005, 13(26): 10795-10800.
DOI: 10.1364/opex.13.010795
Google Scholar
[6]
Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 2006, 440(7083): 508-511.
DOI: 10.1038/nature04594
Google Scholar
[7]
Huang Q, Liang R, Chen P, et al. High resonant transmission contrast filter based on the dual side-coupled cavities plasmonic structure[J]. JOSA B, 2011, 28(8): 1851-1854.
DOI: 10.1364/josab.28.001851
Google Scholar
[8]
Eggleton B J, Ahuja A, Westbrook P S, et al. Integrated tunable fiber gratings for dispersion management in high-bit rate systems[J]. Journal of Lightwave Technology, 2000, 18(10): 1418.
DOI: 10.1109/50.887194
Google Scholar
[9]
Chen P, Liang R, Huang Q, et al. Plasmonic filter with sub-waveguide coupled to vertical rectangular resonator structure[J]. Optics Communications, 2011, 284(19): 4795-4799.
DOI: 10.1016/j.optcom.2011.05.077
Google Scholar
[10]
Wang B, Wang G P. Plasmon Bragg reflectors and nanocavities on flat metallic surfaces[J]. Applied Physics Letters, 2005, 87(1): 013107-013107-3.
DOI: 10.1063/1.1954880
Google Scholar
[11]
Hosseini A, Massoud Y. A low-loss metal-insulator-metal plasmonic bragg reflector[J]. Optics express, 2006, 14(23): 11318-11323.
DOI: 10.1364/oe.14.011318
Google Scholar
[12]
Ehlert A, Buettgenbach S. Automatic sensor system for groundwater monitoring network[C]/Photonics East'99. International Society for Optics and Photonics, 1999: 61-69.
Google Scholar
[13]
Levy U, Campbell K, Groisman A, et al. On-chip microfluidic tuning of an optical microring resonator [J]. Applied physics letters, 2006, 88(11): 111107-111107-3.
DOI: 10.1063/1.2182111
Google Scholar
[14]
Kerbage C, Eggleton B J. Manipulating light by microfluidic motion in microstructured optical fibers[J]. Optical Fiber Technology, 2004, 10(2): 133-149.
DOI: 10.1016/j.yofte.2003.11.003
Google Scholar
[15]
Noual A, Pennec Y, Akjouj A, et al. Nanoscale plasmon waveguide including cavity resonator[J]. Journal of Physics: Condensed Matter, 2009, 21(37): 375301.
DOI: 10.1088/0953-8984/21/37/375301
Google Scholar
[16]
Chen L, Lu P, Tian M, et al. A subwavelength MIM waveguide filter with single-cavity and multi-cavity structures[J]. Optik-International Journal for Light and Electron Optics, (2013).
DOI: 10.1016/j.ijleo.2012.11.025
Google Scholar
[17]
Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370.
Google Scholar
[18]
Wang B, Wang G P. Plasmon Bragg reflectors and nanocavities on flat metallic surfaces[J]. Applied Physics Letters, 2005, 87(1): 013107-013107-3.
DOI: 10.1063/1.1954880
Google Scholar
[19]
Yu Z, Liang R, Chen P, et al. Integrated Tunable Optofluidics Optical Filter Based on MIM Side-Coupled-Cavity Waveguide[J]. Plasmonics, 2012, 7(4): 603-607.
DOI: 10.1007/s11468-012-9348-2
Google Scholar