The Tunable Optofluidics Waveguide Design Based on the Novel Dual Side-Coupled Cavities Plasmonic Structure

Article Preview

Abstract:

We present a tunable wavelength filter in plasmonic metaldielectricmetal (MIM) side-coupled-cavity waveguide with optofluidics pump system proposed to realize tunable mechanism. The peak wavelength can shift by manipulating the length of liquid column and the effective refractive index. The finite difference time domain method is used in the numerically simulated experiment and the resonant wavelengths from 1000 to around 1800nm had been analyzed. The results reveal that the resonant wavelengths are proportional to the liquid volume length and refractive index of liquid in the cavity. This waveguide filter can be used in integrated optical circuits.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

648-653

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

DOI: 10.1038/nature01937

Google Scholar

[2] Veronis G, Fan S. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides[J]. Applied Physics Letters, 2005, 87(13): 131102-131102-3.

DOI: 10.1063/1.2056594

Google Scholar

[3] Wang T B, Wen X W, Yin C P, et al. The transmission characteristics of surface plasmon polaritons in ring resonator[J]. Opt. Express, 2009, 17(26): 24096-24101.

DOI: 10.1364/oe.17.024096

Google Scholar

[4] Lee T W, Gray S K. Subwavelength light bending by metal slit structures[J]. Opt. Express, 2005, 13(24): 9652-9659.

DOI: 10.1364/opex.13.009652

Google Scholar

[5] Gao H, Shi H, Wang C, et al. Surface plasmon polariton propagation and combination in Y-shaped metallic channels[J]. Optics Express, 2005, 13(26): 10795-10800.

DOI: 10.1364/opex.13.010795

Google Scholar

[6] Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 2006, 440(7083): 508-511.

DOI: 10.1038/nature04594

Google Scholar

[7] Huang Q, Liang R, Chen P, et al. High resonant transmission contrast filter based on the dual side-coupled cavities plasmonic structure[J]. JOSA B, 2011, 28(8): 1851-1854.

DOI: 10.1364/josab.28.001851

Google Scholar

[8] Eggleton B J, Ahuja A, Westbrook P S, et al. Integrated tunable fiber gratings for dispersion management in high-bit rate systems[J]. Journal of Lightwave Technology, 2000, 18(10): 1418.

DOI: 10.1109/50.887194

Google Scholar

[9] Chen P, Liang R, Huang Q, et al. Plasmonic filter with sub-waveguide coupled to vertical rectangular resonator structure[J]. Optics Communications, 2011, 284(19): 4795-4799.

DOI: 10.1016/j.optcom.2011.05.077

Google Scholar

[10] Wang B, Wang G P. Plasmon Bragg reflectors and nanocavities on flat metallic surfaces[J]. Applied Physics Letters, 2005, 87(1): 013107-013107-3.

DOI: 10.1063/1.1954880

Google Scholar

[11] Hosseini A, Massoud Y. A low-loss metal-insulator-metal plasmonic bragg reflector[J]. Optics express, 2006, 14(23): 11318-11323.

DOI: 10.1364/oe.14.011318

Google Scholar

[12] Ehlert A, Buettgenbach S. Automatic sensor system for groundwater monitoring network[C]/Photonics East'99. International Society for Optics and Photonics, 1999: 61-69.

Google Scholar

[13] Levy U, Campbell K, Groisman A, et al. On-chip microfluidic tuning of an optical microring resonator [J]. Applied physics letters, 2006, 88(11): 111107-111107-3.

DOI: 10.1063/1.2182111

Google Scholar

[14] Kerbage C, Eggleton B J. Manipulating light by microfluidic motion in microstructured optical fibers[J]. Optical Fiber Technology, 2004, 10(2): 133-149.

DOI: 10.1016/j.yofte.2003.11.003

Google Scholar

[15] Noual A, Pennec Y, Akjouj A, et al. Nanoscale plasmon waveguide including cavity resonator[J]. Journal of Physics: Condensed Matter, 2009, 21(37): 375301.

DOI: 10.1088/0953-8984/21/37/375301

Google Scholar

[16] Chen L, Lu P, Tian M, et al. A subwavelength MIM waveguide filter with single-cavity and multi-cavity structures[J]. Optik-International Journal for Light and Electron Optics, (2013).

DOI: 10.1016/j.ijleo.2012.11.025

Google Scholar

[17] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370.

Google Scholar

[18] Wang B, Wang G P. Plasmon Bragg reflectors and nanocavities on flat metallic surfaces[J]. Applied Physics Letters, 2005, 87(1): 013107-013107-3.

DOI: 10.1063/1.1954880

Google Scholar

[19] Yu Z, Liang R, Chen P, et al. Integrated Tunable Optofluidics Optical Filter Based on MIM Side-Coupled-Cavity Waveguide[J]. Plasmonics, 2012, 7(4): 603-607.

DOI: 10.1007/s11468-012-9348-2

Google Scholar